About Pearson

Pearson is the world’s learning company, with presence across 70 countries worldwide. Our unique insights and world-class expertise comes from a long history of working closely with renowned teachers, authors and thought leaders, as a result of which, we have emerged as the preferred choice for millions of teachers and learners across the world.

We believe learning opens up opportunities, creates fulfilling careers and hence better lives. We hence collaborate with the best of minds to deliver you class-leading products, spread across the Higher Education and K12 spectrum.

Superior learning experience and improved outcomes are at the heart of everything we do. This product is the result of one such effort.

Your feedback plays a critical role in the evolution of our products and you can contact us – reachus@pearson.com. We look forward to it.
Chemistry
CONTENTS

» Chemistry ... 01
» Heterocyclic Chemistry ... 07
» Inorganic Chemistry .. 08
» Organic Chemistry .. 11
» Physical Chemistry .. 24
» Analytical Chemistry ... 31
ABOUT THE BOOK

Today's students use textbooks differently than their predecessors. *Chemistry*, Sixth Edition is designed to map to the way students seek and process information. McMurry/Fay’s text helps students and professors get to the heart of chemistry more effectively, and helps students see the connections to chemistry more clearly.

With its spacious, unintimidating design and clear, direct writing style, this text is known for a smart, precise presentation that blends the quantitative and visual aspects of general chemistry. Chemistry is mastered when students make the right connections in three key areas: topics that are related, conceptual reasoning with quantitative work, and the different modes of communicating information. McMurry/Fay’s Chemistry, Sixth Edition breaks through the traditional textbook limitations and help students make connections that have historically been more difficult. Features like Remember&, Conceptual Problems, Conceptual Worked Examples, Inquiry and Worked Examples make these critical connections clear and visible, so students see the chemistry the first time.
ABOUT THE BOOK
Today's students use textbooks differently than their predecessors. Chemistry, Sixth Edition is designed to map to the way students seek and process information. McMurry/Fay's text helps students and professors get to the heart of chemistry more effectively, and helps students see the connections to chemistry more clearly.

With its spacious, unintimidating design and clear, direct writing style, this text is known for a smart, precise presentation that blends the quantitative and visual aspects of general chemistry. Chemistry is mastered when students make the right connections in three key areas: topics that are related, conceptual reasoning with quantitative work, and the different modes of communicating information. McMurry/Fay's Chemistry, Sixth Edition breaks through the traditional textbook limitations and help students make connections that have historically been more difficult. Features like Remember, Conceptual Problems, Conceptual Worked Examples, Inquiry and Worked Examples make these critical connections clear and visible, so students see the chemistry the first time.

FEATURES
■ Presents chemical concepts with quantitative discussions to bring in to sharp focus the connection between chemical reasoning and math. Three types of problems are designed to help students apply solid chemical reasoning to solving problems.
■ In-chapter Conceptual Worked Examples give students their first exposure to working through problems on a conceptual level.
■ In-chapter Conceptual Problems give students an immediate opportunity to solve problems that test their understanding of chemical concepts.
■ End-of-chapter Conceptual Problems give students an opportunity to test that they understand all of the major concepts in the chapter before moving on to the multi-concept problems that require this understanding.
■ McMurry/Fay's design uniquely integrates explanatory narrative with key principles by connecting the various modes of information, words, numbers, and graphics.
■ The spacious, readable, unintimidating layout and design of McMurry/Fay is built in response to conversations with students about their study habits and use of science textbooks. McMurry/Fay maps to students' behavior, rather than challenging it.

CONTENTS
1. Chemistry: Matter and Measurement
2. Atoms, Molecules, and Ions
4. Reactions in Aqueous Solution
5. Periodicity and the Electronic Structure of Atoms
6. Ionic Bonds and Some Main-Group Chemistry
7. Covalent Bonds and Molecular Structure
8. Gases: Their Properties and Behavior
9. Liquids, Solids, and Phase Changes
10. Solutions and Their Properties
11. Chemical Kinetics
12. Chemical Equilibrium
14. Applications of Aqueous Equilibria
15. Thermodynamics: Entropy, Free Energy, and Equilibrium
16. Electrochemistry
17. Hydrogen, Oxygen, and Water
18. The Main-Group Elements
19. Transition Elements and Coordination Chemistry
20. Metals and Solid-State Metals
21. Nuclear Chemistry
22. Organic and Biological Chemistry
Appendix: Mathematical Operations
Appendix: Thermodynamic Properties at 25oC
Appendix: Equilibrium Constants at 25oC
Appendix: Standard Reduction Potentials at 25oC
Appendix: Properties of Water

ABOUT THE AUTHOR(S)
John McMurry, educated at Harvard and Columbia
Robert C. Fay, Professor of Chemistry at Cornell University
ABOUT THE BOOK

Designed for use in a course for first-year students, University Chemistry, 4/e continues in the tradition of previous editions by being intellectually challenging and using mathematical reasoning where it is appropriate to the subject at hand. Besides covering topics essential for an introductory university course in chemistry, the textbook concludes with a series of chapters on special topics including: organic chemistry, biochemistry, nuclear chemistry, and solid state chemistry. The SI system of units has been used throughout the text. The book also contains sufficient number of worked-out examples and numerous problems with a range of difficulty.

FEATURES

- SI system of units used throughout the text
- Over 200 worked-out examples, and questions and answers
- Over 600 unsolved problems and exercises
- Key words, chapter summaries and suggestions for further reading in each chapter to aid learning
- Appendices on physical constants, conversion factors, SI units, and Coulomb's Law
- Answers to select problems at the end of the book

CONTENTS

1. Stoichiometry and the Basis of the Atomic Theory
2. The properties of gases
3. Liquids and Solutions
4. Chemical Equilibrium
5. Ionic Equilibria in Aqueous Solutions
6. Valence and the Chemical Bond
7. Oxidation-Reduction Reactions
8. Chemical Thermodynamics
9. Chemical Kinetics
10. The Electronic Structures of Atoms
11. The Chemical Bond
12. Systematic Molecular Orbital Theory
13. Periodic Properties
14. The Representative Elements: Groups I-IV
15. The Nonmetallic Elements
16. The Transition Metals
17. Organic Chemistry
18. Biochemistry
19. The Nucleus
20. The Properties of Solids
ABOUT THE BOOK
Now in its fifth edition, Introductory Chemistry Essentials continues to foster deep engagement in the course by showing how chemistry manifests in students' daily lives. Author Nivaldo Tro draws upon his classroom experience as an award-winning instructor to extend chemistry from the laboratory to the student's world, capturing student attention with relevant applications and a captivating writing style.

FEATURES
- The fifth edition includes more than 20 new Conceptual Checkpoints, focused on visualizations and drawing as requested by reviewers.
- Key Learning Outcomes that correlate to the Chemical Skills and Examples in the end-of-chapter material.
- Chapter Self-Assessment Quizzes at the end of each chapter provide opportunities for students to assess what they've learned.
- 3-4 Questions for Group Work have been added to the end-of-chapter problems in each chapter to facilitate guided-inquiry learning both inside and outside the classroom.
- Extensive labels and annotations for each illustration direct students to key elements in the art and help them to understand the processes depicted.

CONTENTS
1. The Chemical World
2. Measurement and Problem Solving
3. Matter and Energy
4. Atoms and Elements
5. Molecules and Compounds
6. Chemical Composition
7. Chemical Reactions
8. Quantities in Chemical Reactions
9. Electrons in Atoms and the Periodic Table
10. Chemical Bonding
11. Gases
12. Liquids, Solids, and Intermolecular Forces
13. Solutions
14. Acids and Bases
15. Chemical Equilibrium
16. Oxidation and Reduction
17. Radioactivity and Nuclear Chemistry

ABOUT THE AUTHOR
Nivaldo Tro is Professor of Chemistry at Westmont College in Santa Barbara, California, where he has been a faculty member since 1990. He received his Ph.D. in chemistry from Stanford University, for work on developing and using optical techniques to study the adsorption and desorption of molecules to and from surfaces in ultrahigh vacuum. He then went on to the University of California at Berkeley, where he did post-doctoral research on ultra-fast reaction dynamics in solution. Since coming to Westmont, Professor Tro has been awarded grants from the American Chemical Society Petroleum Research Fund, from Research Corporation, and from the National Science Foundation to study the dynamics of various processes occurring in thin layer films adsorbed on dielectric surfaces. He has been honored as Westmont's outstanding teacher of the year three times and has also received the college's outstanding researcher of the year award.
Basic Chemistry, 4/e

Karen C. Timberlake | William Timberlake

756 | © 2016

ABOUT THE BOOK
Popular features, including “Combining Ideas” sections and end-of-chapter questions, have also been strengthened and expanded. Modern real-world applications help students connect chemical principles to events in their world, while stories involving careers illustrate the importance of chemistry in future careers.

FEATURES
- Unique, color-coded Guides to Problem-Solving are given for each problem type discussed in the text.
- Concept Checks throughout each chapter allow students to check their understanding of new chemical terms and ideas.
- Learning Goals at the beginning of each chapter section clearly identify the key concept of the section, providing a road map for studying.
- Chapter review, key terms, additional problems, and summary of reactions are included in the end-of-chapter material to help students review their comprehension of the material.
- Answers to study check questions and odd-numbered problems are included at the end of each chapter to give students immediate feedback and help them monitor their understanding of the content.

CONTENTS
1. Chemistry in Our Lives
2. Measurements
3. Matter and Energy
4. Atoms and Elements
5. Electronic Structure and Periodic Trends
6. Ionic and Molecular Compounds
7. Chemical Quantities
8. Chemical Reactions
9. Chemical Quantities in Reactions
10. Properties of Solids and Liquids
11. Gases
12. Solutions
13. Reaction Rates and Chemical Equilibrium
14. Acids and Bases
15. Oxidation and Reduction
16. Nuclear Radiation

ABOUT THE AUTHOR(S)
Karen Timberlake is Professor Emerita of chemistry at Los Angeles Valley College, where she taught chemistry for allied health and preparatory chemistry for 36 years. She received her bachelor’s degree in chemistry from the University of Washington and her master’s degree in biochemistry from the University of California at Los Angeles.

Professor Timberlake has been writing chemistry textbooks for 35 years. During that time, her name has become associated with the strategic use of pedagogical tools that promote student success in chemistry and the application of chemistry to real-life situations. More than one million students have learned chemistry using texts, laboratory manuals, and study guides written by Karen Timberlake.
ABOUT THE BOOK
This solid, yet value-priced paperback gives students the background and confidence they need to succeed in chemistry. Stoker focuses on the most important topics—omitting organic and biochemistry chapters—and teaches the problem-solving skills students need. Each topic is developed at “ground level,” and continues step by step until the level of sophistication required for a further chemistry course is attained.

FEATURES
- An emphasis on problem solving throughout uses dimensional analysis in problem-solving whenever possible. This equips students with a powerful and widely applicable tool that requires no mathematics beyond arithmetic and elementary algebra.
- Worked examples with detailed commentary show students the proper way to mentally dissect and solve a problem.
- Over 5,000 questions and problems give students more opportunities than any other text to become proficient problem-solvers.
- Emphasis on significant figure concepts in all problem-solving situations provides two answers to the example: the calculator answer (which does not take into account significant digits), and the correct answer (which is the calculator answer adjusted to the correct number of significant figures).
- Extensive margin notes provide additional details, links between concepts, or historical information about the concepts under discussion. They summarize key concepts and give students tips for remembering concepts or distinguishing between similar concepts.
- Vignettes on “The Human Side of Chemistry” are brief biographies of scientists who helped develop the foundations of modern chemistry.
- A Chemical Extension application adds perspective to worked-out examples that center on specific compounds. It focuses on the chemical compound itself, its relationship to the environment, its relationship to living systems (biochemistry), etc. This helps students become aware of the compound’s “realness,” and not lose themselves in the mathematics of problem solving.
- “Answer Double Check,” found at the end of two-thirds of the worked-out problems in the text, encourages students to consider if their answer in a problem is a “reasonable answer” in terms of numerical magnitude, number of significant figures present, sign convention (plus or minus) and direction of change (increase or decrease).
- Multiple-Choice Practice Test questions in the end-of chapter reviews help students prepare for exams.
- Practice Exercise Review questions are incorporated in the end of chapter summary. Similar to exercises found in the chapter, the end-of-chapter practice exercises measure the students’ comprehension and mastery of concepts in the chapter.

CONTENTS
1. The Science of Chemistry
2. Numbers from Measurements
3. Unit Systems and Dimensional Analysis
4. Basic Concepts About Matter
5. Subatomic Particles, Isotopes, and Nuclear Chemistry
6. Electronic Structure and Chemical Periodicity
7. Chemical Bonds
8. Chemical Nomenclature
9. Chemical Calculations Involving Chemical Equations
10. States of Matter
11. Gas Laws
12. Solutions
13. Acids, Bases, and Salts
14. Chemical Equations: Net Ionic and Oxidation-Reduction
15. Reaction Rates and Chemical Equilibrium
Atomic and Molecular Spectroscopy

S. K. Dogra

ISBN: 9789332533530

ABOUT THE BOOK
Designed as a textbook for undergraduate and postgraduate students of chemistry and physics, *Atomic and Molecular Spectroscopy* elucidates the basic principles and applications of spectroscopy. The physical and quantitative aspects of spectroscopic techniques are covered comprehensively in one book.

General Chemistry

S. Ekambaram

ISBN: 9788131773789

ABOUT THE BOOK
This book presents the fundamental concepts of general chemistry in a precise and comprehensive manner for undergraduate students of chemistry and life science at all Indian universities. Adhering strictly to the UGC curriculum, the contents are written in a simple and lucid language enriched with a large number of examples and illustrations.
ABOUT THE BOOK
This popular text has been completely revised to reflect recent advances in the subject. Deals with the properties of ring systems and general methods of synthesis, providing a unique overview of the subject area. Includes a guide to the naming of the ring systems, invaluable to those unfamiliar with the area.

FEATURES
- Includes recent examples of organometallic reagents which are increasingly used in the synthesis and reactions of heterocyclic compounds.
- New reaction schemes illustrating the use of heterocycles as synthetic intermediates.

CONTENTS
1. Introduction
2. Aromatic Heterocycles
3. Nonaromatic Heterocycles
4. Methods of Ring Synthesis
5. Six-membered Rings
6. Five-membered Rings with One Heteroatom
7. Six-membered Rings with Two or More Heteroatoms
8. Five-membered Rings with Two or More Heteroatoms
9. Three and Four Membered Rings
10. Seven and Larger Membered Ring Compounds
11. Nomenclature

ABOUT THE AUTHOR(S)
Gary L. Miessler, St. Olaf College
Donald A. Tarr, St. Olaf College
Inorganic Chemistry: Principles of Structure and Reactivity

James E. Huheey | Ellen A. Keiter | Richard L. Keiter | Okhil K. Medhi

826 | © 2005

ABOUT THE BOOK
This classic in its field has been substantially reorganized and includes the latest findings in the discipline.

FEATURES
- Substantial rearrangement to suit the requirement of the students and teachers of the Indian subcontinent.
- Thorough re-editing and reorganization of the chapters on chemistry of the main group elements, descriptive chemistry of metals, organometallic chemistry, solid-state chemistry, and bioinorganic chemistry.
- Addition of thermodynamic stability of complex compounds, organometallic chemistry of the main group elements, and Frost diagrams.
- A chapter on symmetry comprising applications of symmetry (including spectroscopy and crystallography) and an introduction to point groups.
- Reorganized and updated chapters on bonding, presenting a modern approach.

CONTENTS
1. What is Inorganic Chemistry?
2. The Structure of the Atom
3. Symmetry and Group Theory
4. Ionic Bonding and the Solid State
5. The Covalent Bond
6. The Structure of Molecules and Stereochemical Nonrigidity
7. Chemical Forces
8. Acid-Base Chemistry
9. Chemistry in Aqueous and Nonaqueous Solvents
10. The Chemistry of the Main Group Elements: Periodicity
11. The Chemistry of the Main Group Elements: Inorganic Chains, Rings and Cages
12. The Chemistry of the main group elements: Halogens and the Noble Gases
13. Some Descriptive Chemistry of the Metals
14. Coordination Chemistry: Bonding
15. Coordination Chemistry: Spectra and Magnetism
17. Coordination Chemistry: Reactions, Kinetic and Mechanisms
18. Organometallic Chemistry: Syntheses, Structure, and Bonding
19. Organometallic Chemistry: Reactivity and Catalysis
20. The Inorganic Chemistry of Biological Systems

ABOUT THE AUTHOR(S)

James E. Huheey received his Ph.D. from the University of Illinois at Urbana-Champaign and has taught at the University of Maryland since 1965. He has received the Leo Schubert Teaching Award and is a Fellow of the AAAS, the Herpetologists' League, and the United States National Museum.

Ellen A. Keiter received her Ph.D. from the University of Illinois at Urbana-Champaign and is currently the director of the honors program in the chemistry department of Eastern Illinois University, where she has taught since 1977. She has received merit awards from Eastern Illinois University for excellence in teaching, research, and service.

Richard L. Keiter received his Ph.D. from the University of Maryland. He joined the faculty at Eastern Illinois University in 1969 and was named distinguished professor in 1998. He served nine years as a councillor of the Council on Undergraduate Research and most recently received a Camille and Henry Dreyfus Scholar/Fellow Award.

Okhil K. Medhi received his Ph.D. from the Indian Institute of Technology, Kanpur, has taught at the North-Eastern Hill University, Shillong, and presently teaches at Gauhati University, Assam, where he has been a professor of chemistry since 1991.
ABOUT THE BOOK
This highly readable text provides the essentials of *Inorganic Chemistry* at a level that is neither too high (for novice students) nor too low (for advanced students). It has been praised for its coverage of theoretical inorganic chemistry. It discusses molecular symmetry earlier than other texts and builds on this foundation in later chapters. Plenty of supporting book references encourage instructors and students to further explore topics of interest.

FEATURES
- NEW - Coverage of oxidation-reduction reactions.
- NEW - Updated and reorganized material throughout
 - Includes recent literature references.
- NEW - Web-based problems.
- NEW - Problems using software for molecular orbital calculations.
- Excellent, balanced coverage of core principles and theory.
- Integration of symmetry arguments throughout

CONTENTS
1. Introduction to Inorganic Chemistry.
5. Molecular Orbitals.
6. Acid-Base and Donor-Acceptor Chemistry.
8. Chemistry of the Main Group Elements.
9. Coordination Chemistry I: Structures and Isomers.
10. Coordination Chemistry II: Bonding.
13. Organometallic Chemistry.
15. Parallels Between Main Group and Organometallic Chemistry.
16. Bioinorganic and Environmental Chemistry.

ABOUT THE AUTHOR(S)
Gary L. Miessler, St. Olaf College
Donald A. Tarr, St. Olaf College
ABOUT THE BOOK

Inorganic Chemistry, 3/e

Alan G. Sharpe

702 | © 2006

The 3rd edition of Inorganic Chemistry provides an excellent introduction to the subject. The fully revised text takes account of important advances, and a new larger format provides accessibility. The exercises have been updated and new outline solutions have been added. In this edition, the author has increased emphasis on solid state chemistry and expanded the treatment of aqueous and non-aqueous solutions.

CONTENTS

1. Nuclear Chemistry
2. Quantum Theory and Atomic Structure
3. Electronic Configurations and some Physical Properties of Atoms
4. Electronic Configurations of Molecules
5. Some Physical Properties of Molecules
6. The Structures and Energetics of Inorganic Solids
7. Inorganic Chemistry in Aqueous Media
8. Inorganic Chemistry in Non-Aqueous Media
9. Hydrogen
10. The Alkali Metals
11. Beryllium, Magnesium and the Alkaline Earth Metals
12. Boron, Aluminium, Gallium, Indium and Thallium
13. Carbon, Silicon, Germanium, Tin and Lead
14. Nitrogen, Phosphorus, Arsenic, Antimony and Bismuth
15. Oxygen, Sulphur, Selenium, Tellurium and Polonium
16. The Halogens
17. The Noble Gases
18. The Transition Elements
19. Electronic Configurations, Electronic Spectra, and Magnetic Properties of Transition Metal Compounds
20. Thermodynamic Aspect of Transition Metal Chemistry
21. Kinetic Aspects of Transition Metal Chemistry
22. Transition Metal Carboxyls and Related Compounds
23. Organometallic Compounds of the Transition Metals
24. Transition Metals of the First Series
25. Transition Metals of the Second and Third Series
26. Inner Transition Elements: The Lanthanides
27. Inner Transition Elements: The Actinides

Also Available...

Inorganic Chemistry, 3e

B. Sivasankar

1032 | © 2013

ABOUT THE BOOK

Designed for a comprehensive course on inorganic chemistry, this textbook meets the academic requirements of undergraduate courses in Indian universities. The book introduces readers to the basics of the subject before progressing to advanced topics and techniques.
ABOUT THE BOOK
All of Paula Bruice’s extensive revisions to the Seventh Edition of *Organic Chemistry* follow a central guiding principle: support what modern students need in order to understand and retain what they learn in organic chemistry for successful futures in industry, research, and medicine.

FEATURES
- A modern organization emphasizing unifying principles of reactivity offers an economy of presentation and discourages memorization:
 - Group I electrophilic addition reactions;
 - Group II nucleophilic substitution reactions and elimination reactions;
 - Group III nucleophilic addition reactions and nucleophilic addition-elimination reactions; and
 - Group IV electrophilic (and nucleophilic) aromatic substitution reactions.
- Students are introduced to synthetic chemistry and retrosynthetic analysis early in the book (Chapters 6 and 7, respectively), so they can start designing multistep syntheses early in the course.
- Seven special Design a Synthesis sections introduce and help students through the iterative process of solving complex problems.
- Problem-Solving Strategies teach students how to approach various types of simple and complex problems, encourage students to organize their thoughts, and reinforces the development of critical thinking skills.
- Over 1,900 in-chapter and end-of-chapter problems include solved examples, problem-solving strategies, and cumulative problems. End-of-chapter problems are tied to each chapter’s Learning Outcomes and vary in difficulty.
- End-of-chapter summaries review the major concepts of the chapter in a concise narrative format to help students synthesize the key points. Reaction summaries, included in each chapter on reactions, ensure that students understand and can explain how each reaction occurs.

CONTENTS
Part 1: An Introduction to the Study of Organic Chemistry
1. Remembering General Chemistry: Electronic Structure and Bonding
2. Acids and Bases: Central to Understanding Organic Chemistry
3. An Introduction to Organic Compounds: Nomenclature, Physical Properties, and Representation of Structure

Part 2: Electrophilic Addition Reactions, Stereochemistry, and Electron Delocalization
4. Isomers: The Arrangement of Atoms in Space
5. Alkenes: Structure, Nomenclature, and an Introduction to Reactivity • Thermodynamics and Kinetics
6. The Reactions of Alkenes: The Stereochemistry of Addition Reactions
7. The Reactions of Alkynes: An Introduction to Multistep Synthesis
8. Delocalized Electrons and Their Effect on Stability, pKa, and the Products of a Reaction

Part 3: Substitution and Elimination Reactions
9. Substitution Reactions of Alkyl Halides
10. Elimination Reactions of Alkyl Halides • Competition between Substitution and Elimination
11. Reactions of Alcohols, Ethers, Amines, Thiols, and Thioethers
12. Organometallic Compounds
13. Radicals • Reactions of Alkanes

Part 4: Identification of Organic Compounds
15. NMR Spectroscopy

Part 5: Carbonyl Compounds
16. Reactions of Carboxylic Acids and Carboxylic Derivatives
17. Reactions of Aldehydes and Ketones • More Reactions of Carboxylic Acid Derivatives • Reactions of Unsaturated Carbonyl Compounds
18. Reactions at the - Carbon of Carbonyl Compounds
Part 6:
19. Reactions Of Benzene And Substituted Benzenes
20. More About Amines• Reactions of Heterocyclic Compounds

Part 7: Bioorganic Compounds
21. The Organic Chemistry Of Carbohydrates
22. The Organic Chemistry Of Amino Acids, Peptides, And Proteins
23. Catalysis in Organic Reactions and in Enzymatic Reactions
24. The Organic Chemistry Of The Coenzymes-

Part 8: Special Topics in Organic Chemistry
Appendix I Values
Appendix II Derivations of Rate Laws
Appendix III Summary of Methods Used to Synthesize a Particular Functional Group
Appendix IV Summary of Methods Employed to Form Carbon-Carbon Bonds

ABOUT THE AUTHOR(S)
Paula Y. Bruice, University of California, Santa Barbara
ABOUT THE BOOK

Organic Chemistry is a well-established two-volume textbook for students studying chemistry at degree level. Volume 2 carries the material of Volume 1: Fundamental Principles to a more advanced level. The author provides a comprehensive introduction to the relationship between physical properties and chemical structures, and then proceeds to a detailed account of stereochemistry. The later chapters are devoted to the most typical compounds of natural products and the problems involved. A selected number of reading references are given at the end of each chapter.

CONTENTS
1. Physical properties and chemical constitution
2. Optical isomerism
3. Nucleophilic substitution at a saturated carbon atom, asymmetric synthesis
4. Geometrical isomerism, stereochemistry of alicyclic compounds
5. Stereochemistry of biphenyl compounds
6. Stereochemistry of some elements other than carbon
7. Carbohydrates
8. Terpenoids
9. Carotenoids
10. Polycyclic aromatic hydrocarbons
11. Steroids
12. Heterocyclic compounds containing two or more hetero-atoms
13. Amino-acids and proteins
14. Alkaloids
15. Anthocyanins
16. Purines and nucleic acids
17. Vitamins
18. Chemotherapy
19. Haemoglobin, chlorophyll and phthalocyanines

ABOUT THE AUTHOR(S)
The late Dr. Finar was Principal Lecturer in Organic Chemistry at the Polytechnic of North London.

ABOUT THE BOOK

The first part of this book collects together the questions set out at end of each chapter in the authors Textbook of Organic Chemistry, Volume 1 (sixth edition). The second part of this book gives the possible solutions, which are linked with an explanation of the sort of reasoning used in order to arrive at one of the answers. In many cases, several answers are given for one question; and in each set of questions, there is at least one which involves the completion of equations. The result is a book which can be used independently of the main volume. This book helps in acquiring a better understanding of the basic principles of organic chemistry and in revising a large amount of the subject matter quickly.
CONTENTS
1. Determination of Structure
2. Properties of Molecules
3. Alkanes
4. Alkenes and Alkynes
5. Halogen derivatives of the alkanes
6. Monohydric alcohols
7. Ethers
8. Aldehydes and ketones
9. Saturated monocarboxylic acids and their derivatives
10. Polycarbonyl compounds
11. Polyhydric alcohols
12. Unsaturated alcohols, ethers, carbonyl compounds and acids
13. Nitrogen compounds
14. Aliphatic compounds of sulphur, phosphorus, silicon and boron
15. Organometallic compounds
16. Saturated dicarboxylic acids
17. Hydroxyacids, stereochemistry, unsaturated dicarboxylic acids
18. Carbohydrates
19. Alicyclic compounds
20. Monocyclic aromatic hydrocarbons
21. Aromatic halogen compounds
22. Aromatic nitro-compounds
23. Aromatic amino-compounds
24. Diazonium salts and their related compounds
25. Aromatic sulphonlic acids
26. Phenols and quinones
27. Aromatic alcohols, aldehydes and ketones
28. Aromatic acids
29. Polynuclear hydrocarbons and their derivatives
30. Heterocyclic compounds
31. Dyes and photochemistry

ABOUT THE AUTHOR(S)
The late Dr. Finar was Principal Lecturer in Organic Chemistry at the Polytechnic of North London.
CONTENTS
1. Organic Synthesis.
2. Experimental Techniques.
3. Spectroscopic Methods and the Interpretation of Spectra.
4. Solvents and Reagents.
5. Aliphatic Compounds.
6. Aromatic Compounds.
7. Selected Alicyclic Compounds.
8. Selected Heterocyclic Compounds.

ABOUT THE BOOK
This book has proved useful for research as well as for teaching purpose. The fourth edition of this book was distinguished from its predecessors by a greater emphasis on semi-micro methods and modern techniques and reactions. While updating the book in several important aspects, namely, chromatography, reaction mechanism, and safety and first-aid measures.

CONTENTS
Part I: Methods and Manipulation
Part II: Preparations
Part III: Reactions and Identification of Organic Compounds
Part IV: Quantitative Analysis
Part V: Simple Enzyme Reactions

ABOUT THE BOOK
As in the earlier editions, the book conveys the important fundamentals and principles of the subject in a simple and easily understandable manner.

CONTENTS
1. Structures of Organic Compounds
2. Structural Theory
3. Symmetry of Organic Molecules (Molecular Dissymmetry)
4. Types of Reactions of Organic Compounds
5. Alkanes, Cycloalkanes and Aromatic Hydrocarbons
Part 2: Chemistry of Functional Groups

11. Alkynes
12. Alkyl Halides Nucleophilic Substitutions, SN Reactions
13. Aryl Halides Nucleophilic Aromatic Substitution (SNAr Reactions)
14. Alcohols and Ethers
15. Phenols
16. Aldehydes and Ketones Nucleophilic Addition
17. Carboxylic Acids
18. Functional Derivatives of Carboxylic Acids
 Nucleophilic Acyl Substitution
19. Amines

Part 3: Special Topics

20. Heterocyclic Compounds
22. Organic Synthesis
23. Oxidation and Reduction Electroorganic Synthesis
24. Molecular Orbitals; Orbital Symmetry (Pericyclic Reactions)
25. Organic Photochemistry

Part 4: Special Topics

20. Heterocyclic Compounds
22. Organic Synthesis
23. Oxidation and Reduction Electroorganic Synthesis
24. Molecular Orbitals; Orbital Symmetry (Pericyclic Reactions)
25. Organic Photochemistry

ABOUT THE AUTHOR(S)

Robert Thornton Morrison, New York University
Robert Neilson Boyd, New York University
Saibal Kanti Bhattacharjee, Gauhati University

ABOUT THE BOOK

The sixth edition of the study guide represents the result of the authors commitment to offer an even more effective teaching/learning tool in conjunction with their book titled Organic Chemistry. Much of the material has been rewritten and reorganized to provide a more accessible presentation, clear explanation and a greater emphasis on fundamentals.

FEATURES

■ The earlier chapters on fundamentals have been streamlined.
■ Key topics such as nucleophilic substitution, elimination, addition, conjugation and stereoselectivity find an easy and effective introduction in the revised version.
■ Alcohols and Ethers are now treated in Chapter 6 (immediately following nucleophilic substitution) which permits realistic use of oxygen compounds in the chemistry that follows.
■ Removal of redundant and outdated material has made the study guide slimmer by 200 pages.
CONTENTS
Acknowledgements.
To the Students.
Note.
5. Alcohols and Ethers.
10. Conjugation and Resonance: Dienes.
11. Alkynes.
12. Cyclic Aliphatic Compounds.
13. Aromaticity; Benzene.
18. Carboxylic Acids.
19. Functional Derivatives of Carboxylic Acids:

Nucleophilic Acyl, Substitution.
22. Amines II: Reactions.
23. Phenols.
24. Carbanions II: Malonic Ester and Acetoacetic Ester Syntheses.
27. Molecular Orbitals.
29. Symphoria: Neighboring Group Effects, Catalysis by Transition Metal Complexes.
30. Heterocyclic Compounds.
32. Polymers and Polymerization.
33. Stereochemistry III: Enantiotopic and Diastereotopic Ligands and Faces.
34. Lipids: Fats and Steroids.
35. Carbohydrates I: Monosaccharides.
36. Carbohydrates II: Disaccharides and Polysaccharides.
38. Analysis of Spectra.

ABOUT THE AUTHOR(S)
Robert Thornton Morrison, New York University

A Guidebook to Mechanism in Organic Chemistry, 6/e

Peter Sykes

428 | © 2005

ABOUT THE BOOK
This classic textbook on mechanistic organic chemistry, characterized by its clarity, careful choice of examples, and its general approach designed to lead to a greater understanding of the subject matter. The book is aimed clearly at the needs of the student, with a thorough understanding of, and provision for, the potential conceptual difficulties he or she is likely to encounter. The book's success in achieving these goals is reflected in the opinion of one reviewer who says, "Sykes remains the bible of mechanistic organic chemistry for thousands of undergraduates, and there is certainly no English language publication of which I am aware which comes even close to challenging it in terms of clarity and coverage."

FEATURES
- New – topics introduced in this edition: ipso aromatic substitution; the mechanistic borderline in nucleophilic substitution; more use of activation parameters; Dimorth's ET parameter; Hammett's Aïx and spectroscopic data; and 13C n.m.r. in biogenesis.
- New – thoroughly revised text with improved explanations, more examples and increased clarity.
CONTENTS
1. Structure, Reactivity, and Mechanism.
3. The Strengths of Acids and Bases.
7. Electrophilic and Nucleophilic Addition to C=C.
8. Nucleophilic Addition to C=O.
10. Carbanions and Their Reactions.
11. Radicals and Their Reactions.
12. Symmetry Controlled Reactions.

FEATURES
- Experimental Techniques
- Mechanism of all reactions described
- Introduction of a number of reactions and experimental procedures of general interest

ABOUT THE BOOK
A dedicated chapter on “The use of spectroscopic methods in qualitative organic analysis” which includes the essentials from a practical viewpoint of ultraviolet and visible spectroscopy and infrared spectroscopy and mass spectroscopy. These spectroscopy techniques are now-days of such great importance that no book on qualitative organic analysis can be regarded complete without their inclusion.

CONTENTS
1. Determination of physical constants
2. Qualitative analysis for the elements
3. The solubility classes
4. Reactions and characterization of selected classes of organic compounds
5. Class reactions
6. The preparation of derivatives
7. Qualitative analysis of mixtures of organic compounds
8. The use of spectroscopic methods in qualitative organic analysis
9. Physical constants of organic compounds

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthur I. Vogel</td>
</tr>
<tr>
<td>382</td>
</tr>
</tbody>
</table>

FEATURES
- Numerous Experiments
- Coverage of quantitative organic analysis through the medium of functional groups

CONTENTS
1. Determination of selected elements in organic compounds
2. General discussion of titrations in non-aqueous solvents
3. Hydroxyl groups (Alcohols)
4. Adjacent hydroxyl groups
5. Hydroxyl groups (Phenols)
6. Amino groups
7. Salts of amines
8. Amino acids
9. Carboxyl groups
10. Salts of carboxylic acids
11. Anhydrides of carboxylic acids
12. Esters of carboxylic acids
13. Aldehydes and ketones
14. Carbohydrates (Sugars)
15. Nitro, Nitrso and azo groups
16. Unsaturation
17. Alkoxy groups
18. C-Methyl, O-acetyl and N-acetyl groups
19. Active Hydrogen
20. Enols
21. Imides
22. Sulphonamides, Thiols, Sulphides and disulphides
23. Determination using ION exchange resins
24. Some application of the karl fischer reagent
25. Alpha-epoxy groups
26. Miscellaneous determinations

<table>
<thead>
<tr>
<th>Organic Chemistry, 8/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leroy G. Wade</td>
</tr>
<tr>
<td>1288</td>
</tr>
</tbody>
</table>

ABOUT THE BOOK
Acclaimed for its clarity and precision, Wade's *Organic Chemistry* maintains scientific rigor while engaging students at all levels. Wade presents a logical, systematic approach to understanding the principles of organic reactivity and the mechanisms of organic reactions. This approach helps students develop the problem-solving strategies and the scientific intuition they will apply throughout the course and in their future scientific work.
The Eighth Edition provides enhanced and proven features in every chapter, including new Chapter Goals, Essential Problem-Solving Skills and Hints that encourage both majors and non-majors to think critically and avoid taking “short cuts” to solve problems. Mechanism Boxes and Key Mechanism Boxes strengthen student understanding of Organic Chemistry as a whole while contemporary applications reinforce the relevance of this science to the real world.

FEATURES
- Wade provides greater coverage of complete mechanisms and more mechanistic questions than any other book on the market to help students predict reactions they have never seen before.
- 20 Key Mechanism Boxes are the fundamental mechanistic principles that recur throughout the course. They are the mechanisms that compose most of the longer, more complex mechanisms. Each Key Mechanism Box reinforces student understanding with steps and explanations that describe the reaction mechanism (how the reaction occurs), a specific example of the mechanism for reinforcement, and a concluding problem or question so students can assess their understanding.
- Over 150 Mechanism Boxes help students understand how reactions occur by focusing on the individual steps of each reaction. The Mechanism Boxes are shaded in blue so students can locate them easily as they thumb through the chapter.
- Over 1400 (mostly multi-part) problems provide immediate review and allow students to assess their understanding of what they have read in each section before moving on to the next.
- Problem-Solving Strategies help students break down the multitude of complex problems into simpler pieces. These strategies help students establish thoughtful methods for approaching complicated problems — like those that require proposing mechanisms and developing multi-step synthesis.

CONTENTS
1. Introduction and Review
2. Structure and Properties of Organic Molecule
3. Structure and Stereochemistry of Alkanes
4. The Study of Chemical Reactions
5. Stereochemistry
6. Alkyl Halides: Nucleophilic Substitution and Elimination
7. Structure and Synthesis of Alkenes
8. Reactions of Alkenes
9. Alkynes
10. Structure and Synthesis of Alcohols
11. Reactions of Alcohols
12. Infrared Spectroscopy and Mass Spectrometry
13. Nuclear Magnetic Resonance Spectroscopy
14. Ethers, Epoxides and Thioethers
15. Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy
16. Aromatic Compounds
17. Reactions of Aromatic Compounds
18. Ketones and Aldehydes
19. Amines
20. Carboxylic Acids
21. Carboxylic Acid Derivatives
22. Condensations and Alpha Substitutions of Carbonyl Compounds
23. Carbohydrates and Nucleic Acids
24. Amino Acids, Peptides, and Proteins
25. Lipids

ABOUT THE AUTHOR(S)
L.G. “Skip” Wade decided to become a chemistry major during his sophomore year at Rice University, while taking organic chemistry from Professor Ronald M. Magid. After receiving his B.A. from Rice in 1969, Wade went on to Harvard University, where he did research with Professor James D. White. While at Harvard, he served as the Head Teaching Fellow for the organic laboratories and was strongly influenced by the teaching methods of two master educators, Professors Leonard K. Nash and Frank H. Westheimer.
ABOUT THE BOOK
L. Finar dwara likhit Carbanik Rasayan Vigyan, vol.1-mulbhut sidhant ko yadi aapni bhasa mein pada jaye to esse aachi bat ho hi nahin sakti. Hamari sikhsan pranali mein sabse badi kami yah hai ki aaj bhi vigyan ewm takniki vishyo ko padhane ewm samjhane ke liye English ka hi prayog kiya jata hai, parinamsawarup vidhyarthi ucch aank prapt karne ki aakanksha mein Vishay ki mul avdharnaoo ko samjhne ke bajay unko ratne hetu badhya ho jate hai.
ABOUT THE BOOK
I. L. Finar dwara likhit Carbanik Rasayan Vigyan, vol. 1-mulbhut sidhant ko yadi aapni bhasa mein pada jaye to esse aachi bat ho hi nahiin sakti. Hamari sikhsan pranali mein sabse badi kami yah hai ki aaj bhi vigyan ewm takniki vishyo ko padhane ewm samjhane ke liye English ka hi prayog kiya jata hai, parinamsawarup vidhyarthi ucch aank prapt karne ki aakanksha mein Vishay ki mul avdharnaoo ko samjhne ke bajay unko ratne hetu badhya ho jate hai.

ISBN: 9788131791394

CONTENT
Preface
Sanrachna ka Nirdharan
1. Anuoo ke Gun
2. Elken
3. Elkin ewm Elkaien
4. Elkeno ke Helojan byutpann
5. Monohaedik Elkohal
6. Ethar
7. Eledhaid ewm kiton
8. Santript Monokarbocsilik aaml ewm unke byutpann
9. Bahunabhiy Haydrocarban ewm unke byutpann
10. Polyhaidik Elkohal
11. Asanstript Elkohal, Ethar, Carbonil yogik ewm Aaml
12. Naitrozen yukt Yogik
13. Salfar, Fasforas, Silican ewm Boron ke Elfitak yogik
14. Carbhatvik Yogik
15. Sanstript Daecarbocsilik Aaml
16. Haidoci Aaml, Trivim Rasayan Sastra tha Asanstript Aaml
17. Carbohaidets
18. Elisaelik yogik
19. Ekhalchakriya erometik haydrocarbons
20. Erometic Hellogen Yogic
21. Erometic Naetro Yogic
22. Erometic emino Yogic
23. Daeyejoniyam lavan ewm unse sambandhit Yogic
24. Erometic Salfonik Aaml
25. Finaols ewm cvinons
26. Erometic Elcohals, Eldihaeds ewm kitons
27. Erometic Aaml
28. Bahunabhikiy Haydrocarban ewm unke byutpann

⇒ ALSO AVAILABLE...

Organic Chemistry, Vol 1, 6/e NTM (Hindi)

I. L. Finnar

400 | © 2016

ISBN: 9788131791394

ABOUT THE BOOK
This text provides a comprehensive and detailed discussion of the investigation of organic and bioorganic reaction mechanisms. It addresses questions such as: 'How are bonds between atoms rearranged?', 'What sort of structural changes take place to cause bond fission and formation?' and 'How do catalysts lower the activation energies of reactions?'

ISBN: 9788131729496

Essential Organic Chemistry

Paula Yurkanis Bruice | Rajendra Prasad

672 | © 2007

ABOUT THE BOOK
Essential Organic Chemistry is designed to help students see organic chemistry as an interesting and exciting science and to give them an opportunity to develop critical-thinking skills. It engages students through detailed presentation of reactions, providing a solid understanding of reactivity rather than requiring rote memorization. Once students understand the reasons behind the reactivity of organic compounds, they then will be better prepared to understand the reactions involved in such areas as metabolism, PCR and genetic engineering.

ISBN: 9788131703731

Organic and Bio-Organic Mechanisms

Michael I. Page | Andrew Williams

312 | 2009

ISBN: 9788131711071

Advanced Organic Chemistry: Reactions and Mechanisms

Maya Shankar Singh

528 | 2004
Organic and Bio-Organic Mechanisms

Michael I. Page | Andrew Williams

[Book Cover]

ISBN: 9788131729496

ABOUT THE BOOK
This text provides a comprehensive and detailed discussion of the investigation of organic and bioorganic reaction mechanisms. It addresses questions such as: ‘How are bonds between atoms rearranged?’, ‘What sort of structural changes take place to cause bond fission and formation?’ and ‘How do catalysts lower the activation energies of reactions?’

Advanced Organic Chemistry: Reactions and Mechanisms

Maya Shankar Singh

[Book Cover]

ISBN: 9788131711071

ABOUT THE BOOK
For students of B.Sc./M.Sc. Chemistry. Practising professionals in various chemical, bio-chemical and pharmaceutical industries.
ABOUT THE BOOK
Andrew Cooksy's clear teaching voice help students connect immediately with the subject matter while defusing some of their initial trepidation about physical chemistry. Through lively narrative and meticulous explanations of mathematical derivations, Physical Chemistry: Thermodynamics, Statistical Mechanics, and Kinetics engages students while fostering a sincere appreciation for the interrelationship between the theoretical and mathematical reasoning that underlies the study of physical chemistry. The author's engaging presentation style and careful explanations make even the most sophisticated concepts and mathematical details clear and comprehensible.

FEATURES
- FLEXIBLE ORGANIZATION ACCOMMODATES THE CONTENT NEEDS AND TEACHING STYLES OF EACH SEMESTER/QUARTER SEQUENCE.
 Separation of Quantum Chemistry and Thermodynamics into distinct volumes provides the utmost in flexibility, allowing instructors to lead with their choice of Quantum-first or Thermo-first coverage.
- Reflective of popular lecture strategies, chapter opening and closing features ground each topic within the larger framework of physical chemistry and help students stay oriented as they deepen their understanding.
- Opening features including a “Visual Roadmap” and “Context: Where Are We Now” show readers where they are within the text and relative to other physical chemistry topics.
- “Goal: Why Are We Here?” and “Learning Objectives” features prepare students for the work ahead and outline the skills students should expect to acquire from their study of the chapter.
- The concluding “Where Do We Go From Here” section at the end of each chapter reinforces student orientation and illuminates the intrinsic connection between concepts.”

CONTENTS
Physical Chemistry at the Macroscopic Scale:
Statistical Mechanics, Thermodynamics, and Kinetics
A Introduction: Tools from Math and Physics
A.1 Mathematics
A.2 Classical Physics
I Extrapolation to Macroscopic Systems
 1. 1 Introduction to Statistical Mechanics: Building Up to the Bulk
 2. 2 Partitioning the Energy
 3. 3 Statistical Mechanics and Molecular Interactions
 4. 4 Mass Transport
 5. 5 Energy transport
II Non-Reactive Macroscopic Systems
 6. 6 Introduction to Thermodynamics

III Reactive Systems
 11. 11 Chemical Thermodynamics
 12. 12 Elementary Reactions
 13. 13 Multi-step Reactions
 14. 14 Reaction Networks

7. 7 Energy and Enthalpy
8. 8 Entropy
9. 9 Phase Transitions and Phase Equilibrium
10. 10 Solutions

ABOUT THE AUTHOR
Andrew Cooksy is a chemistry professor at San Diego State University, where he teaches courses in physical and general chemistry and carries out research on the spectroscopy, kinetics, and computational chemistry of reactive intermediates in combustion and interstellar processes. He attended the Washington, D.C. public schools before receiving his undergraduate degree in chemistry and physics from Harvard College and his Ph.D. in chemistry from the University of California at Berkeley.
ABOUT THE BOOK
Andrew Cooksy’s clear teaching voice help students connect immediately with the subject matter while defusing some of their initial trepidation about physical chemistry. Through lively narrative and meticulous explanations of mathematical derivations, Physical Chemistry: Quantum Chemistry and Molecular Interactions engages students while fostering a sincere appreciation for the interrelationship between the theoretical and mathematical reasoning that underlies the study of physical chemistry. The author’s engaging presentation style and careful explanations make even the most sophisticated concepts and mathematical details clear and comprehensible.

FEATURES
- **FLEXIBLE ORGANIZATION ACCOMMODATES THE CONTENT NEEDS AND TEACHING STYLES OF EACH SEMESTER/QUARTER SEQUENCE.** Separation of Quantum Chemistry and Thermodynamics into distinct volumes provides the utmost in flexibility, allowing instructors to lead with their choice of Quantum-first or Thermo-first coverage.
- **Reflective of popular lecture strategies, chapter opening and closing features ground each topic within the larger framework of physical chemistry and help students stay oriented as they deepen their understanding.**
- **Opening features including a “Visual Roadmap” and “Context: Where Are We Now” show readers where they are within the text and relative to other physical chemistry topics.**
- **“Goal: Why Are We Here?” and “Learning Objectives” features prepare students for the work ahead and outline the skills students should expect to acquire from their study of the chapter.**
- **The concluding “Where Do We Go From Here” section at the end of each chapter reinforces student orientation and illuminates the intrinsic connection between concepts.**

CONTENTS
Quantum Chemistry and Molecular Interactions
A Introduction: Tools from Math and Physics
A.1 Mathematics
A.2 Classical Physics
I Atomic Structure
 1. Classical and Quantum Mechanics
 2. The Schrödinger Equation
 3. One-Electron Atoms
 4. Many-Electron Atoms
II Molecular Structure
 5. Chemical Bonds
 6. Molecular Symmetry
III Molecular Interactions
 7. Electronic States of Molecules
 8. Vibrational States of Molecules
 9. Rotational States of Molecules
 10. Intermolecular Forces
 11. Nanoscale Chemical Structure
 12. The Structure of Liquids
 13. The Structure of Solids

ABOUT THE AUTHOR
Andrew Cooksy is a chemistry professor at San Diego State University, where he teaches courses in physical and general chemistry and carries out research on the spectroscopy, kinetics, and computational chemistry of reactive intermediates in combustion and interstellar processes. He attended the Washington, D.C. public schools before receiving his undergraduate degree in chemistry and physics from Harvard College and his Ph.D. in chemistry from the University of California at Berkeley.
ABOUT THE BOOK
Engel and Reid’s Physical Chemistry gives students a contemporary and accurate overview of physical chemistry while focusing on basic principles that unite the sub-disciplines of the field. The Third Edition continues to emphasize fundamental concepts and presents cutting-edge research developments that demonstrate the vibrancy of physical chemistry today.

FEATURES
- Modern applications are drawn from biology, environmental science, and material science to help give Physical Chemistry immediate relevance to students.
- An emphasis on problem solving includes:
 - Numerous Worked Examples and highlighted Key Equations throughout help students understand the math and develop their own problem-solving skills.
 - Concept Questions, Quantitative Problems, and a unique set of problems related to the web-based simulations and animations at the end of each chapter offer students a variety of study and assessment resources.
 - Additional math-development resources available in an Appendix provide a quick reference.
- Current research is featured throughout along with new developments in the field, such as gap engineering, quantum dots, quantum wells, teleportation, and scanning tunneling microscopy to reflect the vibrancy of the field today.

CONTENTS
1. Fundamental Concepts of Thermodynamics
3. The Importance of State Functions: Internal Energy and Enthalpy
4. Thermochemistry
5. Entropy and the Second and Third Laws of Thermodynamics
6. Chemical Equilibrium
7. The Properties of Real Gases
9. Ideal and Real Solutions
10. Electrolyte Solutions
11. Electrochemical Cells, Batteries, and Fuel Cells
12. The Schrödinger Equation
13. The Quantum Mechanical Postulates
14. The Particle in the Box and the Real World
15. Commuting and Noncommuting Operators and the Surprising Consequences of Entanglement
16. A Quantum Mechanical Model for the Vibration and Rotation of Molecules
17. The Vibrational and Rotational Spectroscopy of Diatomic Molecules
18. The Hydrogen Atom
19. Many-Electron Atoms
20. Quantum States for Many-Electron Atoms and Atomic Spectroscopy
21. The Chemical Bond in Diatomic Molecules
22. Molecular Structure and Energy Levels for Polyatomic Molecules
23. Electronic Spectroscopy
24. Computational Chemistry
25. Molecular Symmetry
26. Nuclear Magnetic Resonance Spectroscopy
27. The Boltzmann Distribution
28. Ensemble and Molecular Partition Functions
29. Statistical Thermodynamics
30. Kinetic Theory of Gases
31. Transport Phenomena
32. Elementary Chemical Kinetics
33. Complex Reaction Mechanisms

ABOUT THE AUTHOR(S)
Thomas Engel has taught chemistry for more than 20 years at the University of Washington, where he is currently Professor of Chemistry and Associate Chair for the Undergraduate Program. Professor Engel received his bachelor’s and master’s degrees in chemistry from the Johns Hopkins University, and his Ph.D. in chemistry from the University of...
Chicago. He then spent 11 years as a researcher in Germany and Switzerland, in which time he received the Dr. rer. nat. habil. degree from the Ludwig Maximilians University in Munich. In 1980, he left the IBM research laboratory in Zurich to become a faculty member at the University of Washington.

Philip Reid has taught chemistry at the University of Washington since he joined the chemistry faculty in 1995. Professor Reid received his bachelor’s degree from the University of Puget Sound in 1986, and his Ph.D. in chemistry from the University of California at Berkeley in 1992. He performed postdoctoral research at the University of Minnesota, Twin Cities, campus before moving to Washington.

ABOUT THE BOOK
Basic concepts of both experimental and theoretical chemical kinetics are concisely explained for those seeking a general knowledge of the subject from this well-known text, now being totally revised and updated. In addition, the book is an invaluable starting point for those embarking on research in kinetics and physical chemistry. Extensive chapter bibliographies point the way toward more detailed accounts or specialized aspects. Historical background included in both chapter introductions and biographical sketches of important researchers in chemical kinetics.

FEATURES
- An invaluable starting point for those embarking on research in kinetics and physical chemistry.
- Extensive chapter bibliographies point the way toward more detailed accounts or specialized aspects.
- Historical background included in both chapter introductions and biographical sketches of important researchers in chemical kinetics.

CONTENTS
2. Analysis of Kinetic Results.
4. Theories of Reaction Rates.
5. Elementary Gas-Phase Reactions.
7. Reactions on Surfaces.
11. Isotope Effects.
12. Reaction Dynamics.
ABOUT THE BOOK
This classic text on quantum chemistry has been extensively updated to include
the latest research and developments in the field. With its solid presentation of
mathematics, this bestseller provides a great introduction to the fundamentals of
quantum chemistry and
the math needed to master it.

The seventh edition covers quantum mechanics, atomic structure, and molecu-
lar electronic structure and clearly demonstrates the usefulness and limitations of
current quantum-mechanical methods for the calculation of molecular properties.

FEATURES
- In-depth treatment of quantum chemistry
- Derivations are presented in full, step-by-step detail
- Comprehensive discussions of the major computational methods of molecular electronic structure (Hartree—
 Fock, CI, density-functional theory, MP2, coupled cluster, semiempirical, molecular mechanics) are provided.

CONTENTS
1. The Schrödinger Equation
2. The Particle in a Box
3. Operators
4. The Harmonic Oscillator
5. Angular Momentum
6. The Hydrogen Atom
7. Theorems of Quantum Mechanics
8. The Variation Method
9. Perturbation Theory
10. Electron Spin and the Spin-Statistics Theorem
11. Many-Electron Atoms
12. Molecular Symmetry
13. Electronic Structure of Diatomic Molecules
14. Theorems of Molecular Quantum Mechanics
15. Molecular Electronic Structure
16. Electron-Correlation Methods
17. Semiempirical and Molecular-Mechanics Treatments of Molecules
Appendix
Bibliography
Answers to Selected Problems
Index

ABOUT THE AUTHOR(S)
Ira N. Levine is faculty, Brooklyn College, City University of New York.
ABOUT THE BOOK
Aimed at providing undergraduate and postgraduate students with an understanding of thermodynamics, this book brings out the thermodynamic interrelationships in a succinct break-down of its essential elements. It starts with the fundamentals and progresses to advanced concepts to enable students to appreciate the application of thermodynamics in different areas of chemistry. Conforming to the syllabus framed by the U.G.C. curriculum, this course textbook is written in a simple and lucid language, the discussion and explanations being interspersed with appropriate worked-out examples. Every chapter is accompanied by adequate end-of-chapter exercises.

FEATURES
- Covers all introductory concepts in detail with a rich pedagogy for easy understanding
- Clear explanation of important concepts such as partial molar properties, fugacity and activity
- Over 140 solved examples and 100 end-of-chapter exercises

CONTENTS
1. Introduction
2. The first law of thermodynamics
3. Thermochemistry
4. The second law of thermodynamics
5. Free energy and work function
6. The third law of thermodynamics
7. Statistical thermodynamics
8. Partial molar properties
9. Phase equilibria
10. Fugacity and activity
11. Chemical Equilibrium
12. Aqueous solutions of electrolytes

ABOUT THE AUTHOR(S)
J. Rajaram and J. C. Kuriacose are retired professors of the department of chemistry, Indian Institute of Technology, Madras, Chennai, having devoted over thirty years to teaching chemistry.
ABOUT THE BOOK
This best-selling text presents the principles and applications of contemporary physical chemistry as they are used to solve problems in biology, biochemistry, and medicine. This text puts the study of physical chemistry for these students in context.
ABOUT THE BOOK
This introduction to quantitative analysis first covers the traditional topics of titrimetric and gravimetric analysis; and then provides elementary coverage of instrumental topics, such as potentiometry, electrochemistry spectrophotometry, emission spectroscopy, and chromatography.

FEATURES
- For each concept, first explains in words what is going on — to establish a physical picture for readers before they plunge into mathematical formulations.
- Provides directions for numerous laboratory experiments.
- Includes illustrative calculations.

CONTENTS
1. Introduction.
2. Errors and the Treatment of Analytical Data.
3. Titrimetric Methods of Analysis.
4. Gravimetric Methods of Analysis.
5. Review of Chemical Equilibrium.
6. Acid-Base Equilibria.
7. Acid-Base Equilibria in Complex Systems.
8. Complex Formation Titrations.
10. Oxidation-Reduction Equilibria.
11. Applications of Oxidation-Reduction Titrations.
13. Other Electrical Methods of Analysis.
15. Emission Spectroscopy.
17. Gas-Liquid Chromatography.
18. Liquid Chromatography.
19. Perspectives.
20. General Laboratory Directions.
22. Laboratory Procedures.
Appendix I: Tables of Equilibrium Constants and Standard Potentials.
Appendix II: Balancing Oxidation-Reduction Equations.
Appendix III: Answers to Odd-Numbered Problems.
FEATURES

- Comprehensive coverage of methods with detailed easy-to-follow practical experiments.
- Basic analytical theory which is essential for understanding the subject.
- Greatly expanded sections on instrumental analysis including aspects of miniaturisation.
- Increased emphasis on minor/trace component analysis and revised statistical handling of data.
- New chapters on sampling, mass spectrometry and nuclear magnetic resonance.

CONTENTS

3. Safety; Units.
4. Reagent Purity.
5. Introduction.
10. The Basis of Separative Methods.
11. Thin Layer Chromatography.
12. Liquid Chromatography.
14. Titrimetric Analysis.
15. Gravimetric Analysis.
17. Direct Electroanalytical Methods.
22. Vibrational Spectroscopy.

ABOUT THE AUTHOR(S)

J. Mendham, Consultant Analytical Chemist
R.C. Denney, Consultant Forensic Scientist
J. D. Barnes, University of Greenwich
M.J.K. Thomas, University of Greenwich

ABOUT THE BOOK

Vogel's Qualitative Inorganic Analysis (in its seventh edition) follows the current trends and techniques in the field of analytical chemistry. Written for undergraduate and postgraduate students of chemistry, this revised and updated edition treats each concept and principle systematically to make the subject comprehensible to beginners as well as advanced learners.

FEATURES

- Updated nomenclature
- Addition of tests for metals based on flame atomic emission and atomic absorption spectrometry
- New classification of mixtures of common and less common ions
- Marginalia highlighting important facts
- Elaborate discussions on preliminary tests, dissolution and fusion of samples
- Health and hazard warnings throughout the text
- Details on the preparation of reagents provided in the appendix

CONTENTS

1. Introduction
2. Experimental Techniques
3. Reactions of the Cations
4. Reactions of the Anions
5. Selected Tests and Separations
6. Reactions of Some Less Common Ions

ABOUT THE AUTHOR(S)

G. Svehla is a formerly professor from the department of chemistry, University College, York, Ireland.
B. Sivasankar is a visiting professor from the department of chemistry, Anna University, Chennai, Tamilnadu.
ABOUT THE BOOK
The book elucidates the principles of analytical methods such as volumetric analysis, gravimetric analysis, statistical methods of analysis, electro-analytical, and thermoanalytical techniques. It also presents the basic principles and instrumentation of UV, IR, NMR, Mass and ESR spectral methods, accompanied by a discussion on the spectra of a number of molecules, intended to develop the skill of the reader and to interpret the spectra of common organic molecules. This text will benefit those preparing for competitive examinations such as NET, SLET, GATE, and the UPSC Civil Services exam.

FEATURES
- Includes up-to-date developments in the field
- Detailed illustration of AES, AAS, and Flame Photometry
- Numerous review questions, solved problems and end of chapter exercises:

CONTENTS
Preface
Acknowledgements
About the Authors
UNIT I Statistical Methods of Analysis
1. Errors in Chemical Analysis and Statistical Data Treatment
UNIT II Quantitative Analysis
2. Volumetric (Titrimetric) Analysis
3. Gravimetric Analysis
UNIT III Thermal Methods of Analysis
4. Thermogravimetric Analysis
5. Differential Thermal Analysis
6. Thermometric Titration
UNIT IV Electroanalytical Techniques
7. Electrogravimetry
8. Polarography
UNIT V Atomic Spectroscopy
9. Atomic Emission Spectroscopy
10. Flame Emission Spectroscopy or Flame Photometry
11. Atomic Absorption Spectroscopy
UNIT VI Molecular Spectroscopy
12. Ultraviolet and Visible Spectroscopy
13. Infrared Absorption Spectroscopy
14. Nuclear Magnetic Resonance (NMR) Spectroscopy
15. Electron Spin Resonance Spectroscopy
UNIT VII Mass Spectrometry
16. Mass Spectrometry
Bibliography
Index

ABOUT THE AUTHOR(S)
Shoba Ramakrishnan was Former Professor and Head, Department of Chemistry, Women's Christian College, Chennai, Tamil Nadu.
Banani Mukhopadhyay is Assistant Professor, Department of Chemistry, Women's Christian College, Chennai, Tamil Nadu.
<table>
<thead>
<tr>
<th>ISBN</th>
<th>Author(s)</th>
<th>Title</th>
<th>Price</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9789332519046</td>
<td>Bruce</td>
<td>Organic Chemistry, 7/e</td>
<td>1099.00</td>
<td>11</td>
</tr>
<tr>
<td>9788131703731</td>
<td>Bruice / Prasad</td>
<td>Essential Organic Chemistry</td>
<td>849.00</td>
<td>22</td>
</tr>
<tr>
<td>9789353063627</td>
<td>Cooksy</td>
<td>Physical Chemistry: Thermodynamics, Statistical Mechanics, and Kinetics</td>
<td>599.00</td>
<td>24</td>
</tr>
<tr>
<td>9789353063634</td>
<td>Cooksy</td>
<td>Physical Chemistry: Quantum Chemistry and Molecular Interactions</td>
<td>599.00</td>
<td>25</td>
</tr>
<tr>
<td>9789332551879</td>
<td>Day / Underwood</td>
<td>Quantitative Analysis, 6/e</td>
<td>779.00</td>
<td>31</td>
</tr>
<tr>
<td>9789332533530</td>
<td>Dogra</td>
<td>Atomic and Molecular Spectroscopy</td>
<td>669.00</td>
<td>6</td>
</tr>
<tr>
<td>9788131773789</td>
<td>Ekambaram</td>
<td>General Chemistry</td>
<td>469.00</td>
<td>6</td>
</tr>
<tr>
<td>9789332519015</td>
<td>Engel / Reid</td>
<td>Physical Chemistry, 3/e</td>
<td>1119.00</td>
<td>26</td>
</tr>
<tr>
<td>9788131712849</td>
<td>Engel / Reid</td>
<td>Thermodynamics, Statistical Thermodynamics, and Kinetics</td>
<td>849.00</td>
<td>30</td>
</tr>
<tr>
<td>9788177585421</td>
<td>Finar</td>
<td>Organic Chemistry, Volume 1, 6/e</td>
<td>1049.00</td>
<td>12</td>
</tr>
<tr>
<td>9788177585414</td>
<td>Finar</td>
<td>Organic Chemistry, Volume 2: Stereochemistry and the Chemistry Natural Products, 5/e</td>
<td>999.00</td>
<td>13</td>
</tr>
<tr>
<td>9788131700938</td>
<td>Finar</td>
<td>Problems and Their Solution in Organic Chemistry</td>
<td>709.00</td>
<td>13</td>
</tr>
<tr>
<td>9789332546974</td>
<td>Finnar</td>
<td>Organic Chemistry, Vol 1, 6/e (Bangla)</td>
<td>389.00</td>
<td>21</td>
</tr>
<tr>
<td>9788131791394</td>
<td>Finnar</td>
<td>Organic Chemistry, Vol 1, 6/e NTM (Hindi)</td>
<td>419.00</td>
<td>22</td>
</tr>
<tr>
<td>9788177589573</td>
<td>Furniss / Hannaford / Smith / Tatchell</td>
<td>Vogel's Textbook of Practical Organic Chemistry, 5/e</td>
<td>1119.00</td>
<td>14</td>
</tr>
<tr>
<td>9788131707937</td>
<td>Gilchrist</td>
<td>Heterocyclic Chemistry, 3/e</td>
<td>769.00</td>
<td>7</td>
</tr>
<tr>
<td>9788177581300</td>
<td>Huheey / Keiter / Keiter / Medhi</td>
<td>Inorganic Chemistry: Principles of Structure and Reactivity</td>
<td>909.00</td>
<td>8</td>
</tr>
<tr>
<td>9788131709726</td>
<td>Laidler</td>
<td>Chemical Kinetics, 3/e</td>
<td>799.00</td>
<td>27</td>
</tr>
<tr>
<td>9789332558533</td>
<td>Levine</td>
<td>Quantum Chemistry, 7/e</td>
<td>759.00</td>
<td>28</td>
</tr>
<tr>
<td>9788131729571</td>
<td>Mahan / Meyers</td>
<td>University Chemistry, 4/e</td>
<td>939.00</td>
<td>2</td>
</tr>
<tr>
<td>9788131727102</td>
<td>Mann / Saunders</td>
<td>Practical Organic Chemistry</td>
<td>739.00</td>
<td>15</td>
</tr>
<tr>
<td>ISBN</td>
<td>Author(s)</td>
<td>Title</td>
<td>Price</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>9789332519022</td>
<td>McMurry / Fay</td>
<td>Chemistry, 6/e</td>
<td>1209.00</td>
<td>1</td>
</tr>
<tr>
<td>9788131723258</td>
<td>Mendham / Barnes / Denney / Thomas</td>
<td>Vogel's Quantitative Chemical Analysis, 6/e</td>
<td>959.00</td>
<td>31</td>
</tr>
<tr>
<td>9788131718858</td>
<td>Miessler / Tarr</td>
<td>Inorganic Chemistry, 3/e</td>
<td>899.00</td>
<td>9</td>
</tr>
<tr>
<td>9788131711514</td>
<td>Morrison</td>
<td>Study Guide to Organic Chemistry, 6/e</td>
<td>819.00</td>
<td>16</td>
</tr>
<tr>
<td>9788131704813</td>
<td>Morrison / Boyd / Bhattcharjee</td>
<td>Organic Chemistry, 7/e</td>
<td>939.00</td>
<td>15</td>
</tr>
<tr>
<td>9788131729496</td>
<td>Page / Williams</td>
<td>Organic and Bio-Organic Mechanisms</td>
<td>649.00</td>
<td>23</td>
</tr>
<tr>
<td>9788131792155</td>
<td>Rajaram</td>
<td>Chemical Thermodynamics: Classical, Statistical and Irreversible</td>
<td>439.00</td>
<td>29</td>
</tr>
<tr>
<td>9789332545076</td>
<td>Ramakrishnan / Mukhopadhyay</td>
<td>Essentials of Analytical Chemistry</td>
<td>499.00</td>
<td>33</td>
</tr>
<tr>
<td>9788131706992</td>
<td>Sharpe</td>
<td>Inorganic Chemistry, 3/e</td>
<td>979.00</td>
<td>10</td>
</tr>
<tr>
<td>9788131711071</td>
<td>Singh</td>
<td>Advanced Organic Chemistry: Reactions and Mechanisms</td>
<td>729.00</td>
<td>23</td>
</tr>
<tr>
<td>9788131799062</td>
<td>Sivasankar</td>
<td>Inorganic Chemistry</td>
<td>709.00</td>
<td>10</td>
</tr>
<tr>
<td>9789386873750</td>
<td>Stoker</td>
<td>Introduction to Chemical Principles, 10/e</td>
<td>879.00</td>
<td>5</td>
</tr>
<tr>
<td>9788131773710</td>
<td>Svehla / Sivasankar</td>
<td>Vogel's Qualitative Inorganic Analysis, 7/e</td>
<td>639.00</td>
<td>32</td>
</tr>
<tr>
<td>9788177584332</td>
<td>Sykes</td>
<td>A Guidebook to Mechanism in Organic Chemistry, 6/e</td>
<td>709.00</td>
<td>17</td>
</tr>
<tr>
<td>9789332581319</td>
<td>Timberlake</td>
<td>Basic Chemistry, 4/e</td>
<td>809.00</td>
<td>4</td>
</tr>
<tr>
<td>9788131709757</td>
<td>Tinoco / Sauer / Wang / Puglisi</td>
<td>Physical Chemistry: Principles and Applications in Biological Sciences, 4/e</td>
<td>1029.00</td>
<td>30</td>
</tr>
<tr>
<td>9789332581302</td>
<td>Tro</td>
<td>Introductory Chemistry, 5/e</td>
<td>919.00</td>
<td>3</td>
</tr>
<tr>
<td>9788131756867</td>
<td>Vogel</td>
<td>Elementary Practical Organic Chemistry: Small Scale Preparations Part 1, 2/e</td>
<td>649.00</td>
<td>18</td>
</tr>
<tr>
<td>9788131756874</td>
<td>Vogel</td>
<td>Elementary Practical Organic Chemistry: Qualitative Organic Analysis Part 2, 2/e</td>
<td>649.00</td>
<td>18</td>
</tr>
<tr>
<td>9788131756881</td>
<td>Vogel</td>
<td>Elementary Practical Organic Chemistry: Quantitative Organic Analysis Part 3, 2/e</td>
<td>649.00</td>
<td>19</td>
</tr>
<tr>
<td>9789332578586</td>
<td>Wade</td>
<td>Organic Chemistry, 8/e</td>
<td>919.00</td>
<td>19</td>
</tr>
</tbody>
</table>

Prices are subject to change without prior notice
For sales queries, please contact...

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
<th>Email</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunil Sharma</td>
<td>9810038092</td>
<td>sunil.sharma2@pearson.com</td>
<td>Delhi & NCR</td>
</tr>
<tr>
<td>Navdeep Singh Virdi</td>
<td>9818692884</td>
<td>navdeep.singh@pearson.com</td>
<td>Delhi & NCR</td>
</tr>
<tr>
<td>Gaurav Sharma</td>
<td>9650078659</td>
<td>gaurav.sharma5@pearson.com</td>
<td>J&K, Haryana, Chandigarh-Test Prep</td>
</tr>
<tr>
<td>Avinash Kumar Shukla</td>
<td>97187 07999</td>
<td>avinash.kumar2@pearson.com</td>
<td>Uttar Pradesh</td>
</tr>
<tr>
<td>Sahil Kumar</td>
<td>8447920102</td>
<td>sahil.kumar@pearson.com</td>
<td>Delhi & Haryana</td>
</tr>
<tr>
<td>Pallav Jain</td>
<td>9654011114</td>
<td>pallav.jain@pearson.com</td>
<td>Delhi & Himachal Pradesh, J&K</td>
</tr>
<tr>
<td>Utkarsh Srivastava</td>
<td>9654179679</td>
<td>utkarsh.srivastava@pearson.com</td>
<td>Delhi University</td>
</tr>
<tr>
<td>Akash Hashia</td>
<td>7042111913</td>
<td>akash.hashia@pearson.com</td>
<td>Punjab, Uttar Pradesh, Himachal-Test Prep</td>
</tr>
<tr>
<td>Sarvendra Singh</td>
<td>9871424307</td>
<td>Sarvendra.Singh@pearson.com</td>
<td>Delhi & Punjab</td>
</tr>
<tr>
<td>Kamal Bisht</td>
<td>9871877866</td>
<td>kamal.bisht@pearson.com</td>
<td>Western Uttar Pradesh-HED & Test Prep</td>
</tr>
<tr>
<td>Dushyant Singh</td>
<td>9314020121</td>
<td>dushyant.singh@pearson.com</td>
<td>Rajasthan-Test Prep</td>
</tr>
<tr>
<td>Santosh Kumar</td>
<td>9415517650</td>
<td>santosh.kumar2@pearson.com</td>
<td>Eastern Uttar Pradesh-HED</td>
</tr>
<tr>
<td>Parvez Khan</td>
<td>9721611115</td>
<td>parvez.khan@pearson.com</td>
<td>Eastern Uttar Pradesh, Chhattisgarh-Test Prep</td>
</tr>
<tr>
<td>Rohit Nair</td>
<td>9660060073</td>
<td>rohit.nair@pearson.com</td>
<td>Rajasthan-HED</td>
</tr>
<tr>
<td>Alok Kumar</td>
<td>9934015180</td>
<td>alok.kumar@pearson.com</td>
<td>Bihar - Patna</td>
</tr>
<tr>
<td>Syed Belaludin</td>
<td>9831105388</td>
<td>syed.belal@pearson.com</td>
<td>West Bengal - Kolkata</td>
</tr>
<tr>
<td>Tapan Kumar Saha</td>
<td>9830137194</td>
<td>tapan.saha@pearson.com</td>
<td>West Bengal - Kolkata</td>
</tr>
<tr>
<td>Vishwajeet Banick</td>
<td>9831499052</td>
<td>vishwajeet.banick@pearson.com</td>
<td>West Bengal - Kolkata</td>
</tr>
<tr>
<td>Ranjan Kumar Mishra</td>
<td>9437276051</td>
<td>ranjan.mishra@pearson.com</td>
<td>Odisha - Bhubneshwar</td>
</tr>
<tr>
<td>Ananda Kumbar Mishra</td>
<td>81 14793497</td>
<td>ananda.mishra@pearson.com</td>
<td>Cuttack</td>
</tr>
<tr>
<td>Debayoti Boro</td>
<td>9831202390</td>
<td>debayoti.boro@pearson.com</td>
<td>Guwahati Assam</td>
</tr>
<tr>
<td>Gaurav Gagwani</td>
<td>9898813419</td>
<td>Gaurav.Gagwani@pearson.com</td>
<td>Gujarat-Ahmedabad</td>
</tr>
<tr>
<td>Aju Mathai</td>
<td>9824403301</td>
<td>aju.mathai@pearson.com</td>
<td>Mumbai-Maharashtra</td>
</tr>
<tr>
<td>Pratap Chavan</td>
<td>9820842496</td>
<td>pratap.chavan@pearson.com</td>
<td>Mumbai-Maharashtra</td>
</tr>
<tr>
<td>Yogendra Sharma</td>
<td>9601856684</td>
<td>yogendra.sharma@pearson.com</td>
<td>Ahmedabad-Gujarat</td>
</tr>
<tr>
<td>Girish Saraf</td>
<td>9545389786</td>
<td>girish.saraf@pearson.com</td>
<td>Nagpur-Maharashtra</td>
</tr>
<tr>
<td>Sarang Rajhans</td>
<td>9960774276</td>
<td>sarang.raghans@pearson.com</td>
<td>Pune-Maharashtra</td>
</tr>
<tr>
<td>Brijesh Pandey</td>
<td>9892064017</td>
<td>brijesh.pandey@pearson.com</td>
<td>Maharashtra-Mumbai</td>
</tr>
<tr>
<td>A.Ramakrishnan</td>
<td>9500002829</td>
<td>ramakrishnan.arumugam@pearson.com</td>
<td>Tamil Nadu-Chennai</td>
</tr>
<tr>
<td>Jayaraj V.S</td>
<td>9994070570</td>
<td>vs.jayaraj@pearson.com</td>
<td>Tamil Nadu-Chennai</td>
</tr>
<tr>
<td>S. Gopinath</td>
<td>9655627617</td>
<td>s.gopinath@pearson.com</td>
<td>Tamil Nadu-Coimbatore</td>
</tr>
<tr>
<td>Selvamohan</td>
<td>9629423456</td>
<td>selvamohan.mahalingam@pearson.com</td>
<td>Tamil Nadu-Coimbatore</td>
</tr>
<tr>
<td>Anandasadeshe</td>
<td>9962229282</td>
<td>anandasadeshe.bi@pearson.com</td>
<td>Tamil Nadu-Chennai</td>
</tr>
<tr>
<td>Bibin Baburaj</td>
<td>6238059162</td>
<td>bibin.baburaj@pearson.com</td>
<td>Tamil Nadu-Coimbatore</td>
</tr>
<tr>
<td>Name</td>
<td>Phone Number</td>
<td>Email</td>
<td>Location</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>P.A. Manigandan</td>
<td>9003353596</td>
<td>manigandan.anand@pearson.com</td>
<td>Chennai & Trichy</td>
</tr>
<tr>
<td>Santosh Thadakamadla</td>
<td>9959444413</td>
<td>t.santosh@pearson.com</td>
<td>Andhra Pradesh-Hyderabad</td>
</tr>
<tr>
<td>Thummala Kiran</td>
<td>9177602565</td>
<td>thummala.kiran@pearson.com</td>
<td>Andhra Pradesh-Hyderabad</td>
</tr>
<tr>
<td>Shiva Kumar</td>
<td>9848102273</td>
<td>shiva.kumar@pearson.com</td>
<td>Vijayawada</td>
</tr>
<tr>
<td>Vuppanapalli Jayaprakash Narayana</td>
<td>9603109934</td>
<td>jayaprakash.vuppanapalli@pearson.com</td>
<td>Vijayawada</td>
</tr>
<tr>
<td>A Venu Kumar</td>
<td>9676771407</td>
<td>venu.kumar@pearson.com</td>
<td>Visakhapatnam</td>
</tr>
<tr>
<td>I. Paraneetharan</td>
<td>9092005309</td>
<td>i.paraneetharan@pearson.com</td>
<td>Karnataka and Kerala</td>
</tr>
<tr>
<td>Yatin Arora</td>
<td>9971046789</td>
<td>yatin.arora@pearson.com</td>
<td>Karnataka-Bengaluru</td>
</tr>
<tr>
<td>Senthil Kumar</td>
<td>8220366222</td>
<td>senthil.kumar@pearson.com</td>
<td>TN & KE</td>
</tr>
<tr>
<td>Ashik Thomas</td>
<td>9745160027</td>
<td>ashik.thomas@pearson.com</td>
<td>Kerala</td>
</tr>
<tr>
<td>Amal Raj Gautam</td>
<td>9620156976</td>
<td>amalraj.gautam@pearson.com</td>
<td>Karnataka-Bengaluru</td>
</tr>
<tr>
<td>Arjun Shetty</td>
<td>9886099802</td>
<td>arjun.shetty@pearson.com</td>
<td>Karnataka-Bengaluru</td>
</tr>
<tr>
<td>M. Hajibakash</td>
<td>9945164499</td>
<td>m.hajibakash@pearson.com</td>
<td>Karnataka-Bengaluru</td>
</tr>
</tbody>
</table>