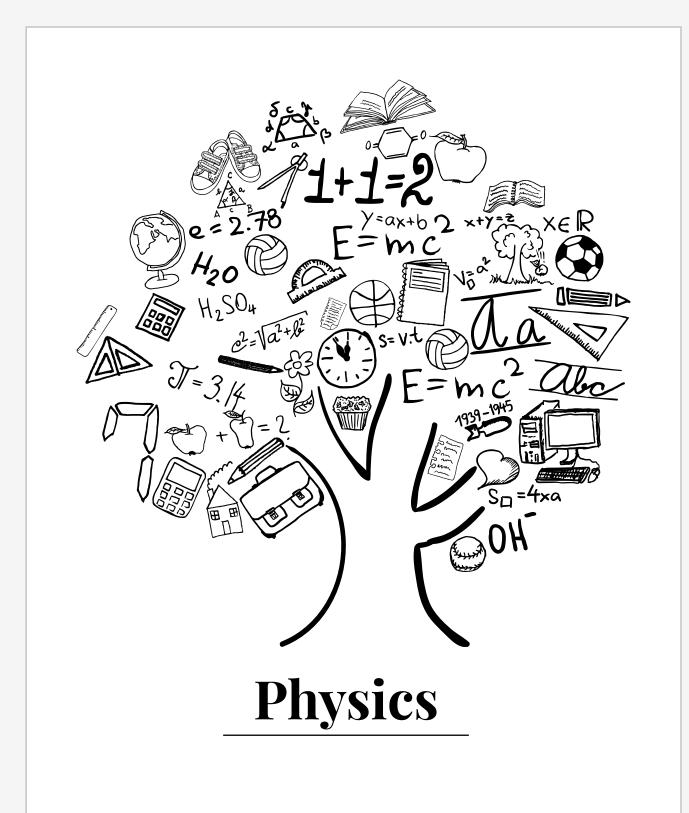
About Pearson

Pearson is the world's learning company, with presence across 70 countries worldwide. Our unique insights and world-class expertise comes from a long history of working closely with renowned teachers, authors and thought leaders, as a result of which, we have emerged as the preferred choice for millions of teachers and learners across the world.

We believe learning opens up opportunities, creates fulfilling careers and hence better lives. We hence collaborate with the best of minds to deliver you classleading products, spread across the Higher Education and Test preparation spectrum.


Superior learning experience and improved outcomes are at the heart of everything we do. This product is the result of one such effort.

Your feedback plays a critical role in the evolution of our products and you can contact us – reachus@pearson.com. We look forward to it.

Catalogue_Physics_2024.indd 1 09-Jan-24 2:30:32 PM

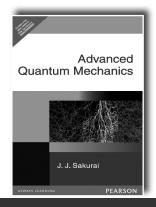
 Catalogue_Physics_2024.indd
 2

 09-Jan-24
 2:30:32 PM

 Catalogue_Physics_2024.indd
 3

 09-Jan-24
 2:30:32 PM

Catalogue_Physics_2024.indd 4 09-Jan-24 2:30:32 PM


CONTENTS

>>	Classical/Quantum Mechanics	2
>>	Electricity and Electromagnetism/Electrodynamics	8
>>	Intermediate Physics	9
>>	Nuclear Physics/Engineering	14
>>	Optics	15
>>	Physics Fundamentals	16
>>	Semiconductor Devices	22
>>	Solid State Physics	23
>>	X-Ray	24

 Catalogue_Physics_2024.indd
 1

 09-Jan-24
 2:30:36 PM

CLASSICAL/QUANTUM MECHANICS

Advanced Quantum Mechanics

J. J. Sakurai

336 | © 2006

ABOUT THE BOOK

This widely-regarded classic presents the major advances in the fundamentals of quantum physics. No familiarity with relativistic quantum mechanics or quantum field theory is presupposed, but the reader is assumed to be familiar with non-relativistic quantum mechanics, classical thermodynamics and classical mechanics.

ISBN: 9788177589160

CONTENTS

Part I: Classical Fields

- 1. Particles & Fields a Discrete and Continuous Mechanical Systems
- 2. Classical Scalar Fields
- 3. Classical Maxwell Fields
- 4. Vector Potentials in Quantum Mechanics.

Part II: The Quantum Theory of Radiation

- 5. Classical Radiation Field
- 6. Creation, Annihilation, and Number Operators
- 7. Quantized Radiation Field
- 8. Emission and Absorption of Photons by Atoms
- 9. Rayleigh Scattering, Thomson Scattering and the Rama Effect
- 10. Radiation Damping and Resonance Fluorescence
- 11. Dispersion Relations and Causality
- 12. The Self-energy of a Bound Electron; the Lamb Shift

Part III: Relativistic Quantum Mechanics of Spin-1/2 Particles

- 13. Probability Conservation in Relativistic Quantum Mechanics
- 14. The Dirac Equation
- 15. Simple Solutions; Non-Relativistic Approximations; Plane Waves
- 16. Relativistic Covariance
- 17. Bilinear Covariants
- 18. Dirac Operators in the Heisenberg Representation
- 19. Zitterbewegung and Negative-Energy Solutions
- 20. Central Force Problems; the Hydrogen Atom
- 21. Hole Theory and Charge Conjugation
- 22. Quantization of the Dirac Field
- 23. Weak Interactions and Parity Nonconservation; the Two-Component Neutrino

Part IV: Covariant Perturbation Theory

- 24. Natural Units and Dimensions
- 25. S-Matrix Expansion in the Interaction Representation + First Order Processes; Mott Scattering and Hyperon Decay
- 26. Two-photon annihilation and Compton Scattering; the Electron Propagator
- 27. Feynman's Space-Time Approach to the Electron Propagator
- 28. Moller Scattering and the Photon Propagator; One Meson Exchange Interactions
- 29. Mass and Charge Renormalization; Radiative Corrections

ABOUT THE AUTHOR

The late **J. J. Sakurai**, noted theorist in particle physics, was born in Tokyo, Japan, in 1933. He received his B.A. from Harvard University in 19565, and his Ph. D. from Cornell University in 1958. Appointed assistant professor at the University of Chicago, he worked there until he became a professor at the University of California, Los Angeles in 1970. Sakurai died in 1982 while he was a visiting professor at CERN in Geneva, Switzerland.

2

CLASSICAL/QUANTUM MECHANICS

Mechanics, 3/e

Keith R. Symon

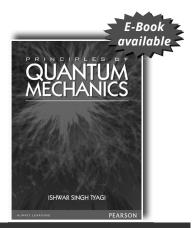
] 656 | © 2016

ABOUT THE BOOK

This text is intended as the basis for an intermediate course in mechanics at the undergraduate level. Such a course, as essential preparation for advanced work in physics, has several major objectives. It must develop in the student a thorough understanding of the fundamental principles of mechanics. It should treat in detail certain specific problems of primary importance in physics, for example, the harmonic oscillator and the motion of a particle under a central force

FEATURES

- The treatment throughout the book is intended to emphasize the modern point of view with mathematical rigor
- The examples treated in the text have been worked out so as to integrate as far as possible, the mathematical treatment with physical interpretation
- Two chapters on the theory of relativity has been added in this edition.
- The problems at end of each chapter requires more or less physical ingenuity in addition to an understanding of the text.


CONTENTS

- 1. Elements of Newtonian Mechanics.
- 2. Motion of a Particle in One Dimension.
- 3. Motion of a Particle in Two or Three Dimensions.
- 4. The Motion of a System of Particles.
- 5. Rigid Bodies.
- 6. Rotation about an Axis.
- 7. Statics.
- 8. Gravitation.
- 9. Moving Coordinate Systems.
- 10. Introduction to the Mechanics of Continuous Media.
- 11. Lagrange's Equations.
- 12. Tensor Algebra.
- 13. Inertia and Stress Tensors.
- 14. The Rotation of a Rigid Body.
- 15. Theory of Small Vibrations.
- 16. Basic Postulates of the Special Theory of Relativity.
- 17. Relativistic Dynamics.
- 18. Bibliography.
- 19. Answers to Odd-Numbered Problems.

ABOUT THE AUTHOR

Keith R. Symon, University of Wisoconsin

3

Principles of Quantum Mechanics

Ishwar Singh Tyagi

584 © 2013

ABOUT THE BOOK

Any course in physics cannot be completed without learning quantum mechanics. This subject helps in understanding the individual behaviour of the subatomic particles that constitute all forms of matter. Principles of Quantum Mechanics comprehensively covers all relevant topics to meet the requirements of both undergraduate and postgraduate students of physics. The initial chapters of the book introduce the basic fundamentals of the subject to help the first-time learners and the later chapters cover aspects that will prepare them to apply quantum mechanics to understand the various physical phenomena, for example, the working of micro- and

nano-devices. The book includes a detailed discussion on why classical mechanics, which is applicable at macroscopic level, cannot be applicable at microscopic level.

CONTENTS

- 1. Introduction
- 2. Wave-particle Duality
- 3. Wave Packets and Uncertainty Principle
- 4. Operators, Eigenstates, Eigenvalues and Schrodinger Equation
- 5. One-dimensional Problems
- 6. The Linear Harmonic Oscillator
- 7. The Linear Vector Space
- 8. The Linear Harmonic Oscillator Revisited
- 9. Angular Momentum
- 10. Three-Dimensional Systems
- 11. Angular Momentum Revisited
- 12. The Spin
- 13. Addition of Angular Momenta
- 14. WKB Approximation and Electron Tunneling
- 15. Time Independent Perturbation theory
- 16. Time Dependent Perturbation Theory
- 17. Semiclassical Theory of Radiations
- 18. Theory of Scattering
- 19. Theory of Measurement in Quantum Mechanics
- 20. Introduction to Quantum computing
- 21. Appendices
 - A. Early Quantum Mechanics
 - **B. Some Supplementary Topics**
 - C. Some Mathematical Relations
 - **D. Various Tables**

ABOUT THE AUTHOR

Ishwar Singh Tyagi is Emeritus Fellow at the Physics Dept. of IIT Roorkee. After completing his Ph.D. in 1976 from the University of Roorkee (now IIT Roorkee) he joined the Department of Physics as a faculty member in 1977 and became professor in 1996. His assignments as post-doctoral as well as visiting scientist took him to the New University of Ulster (NUU), Coleraine, in North Ireland and the Freie Universitat Berlin.

Quantum Mechanics, 2/e

B. H. Bransden | C. J. Joachain

1808 ∣ © 2006

ABOUT THE BOOK

This book gives a modern, comprehensive introduction to the principles of quantum mechanics, to the main approximation methods and to the application of quantum theory to a wide variety of systems. The needs of students having an average mathematical ability are kept very much in mind, with the avoidance of complex mathematical arguments and any undue compression of material.

FEATURES

- Comprehensive coverage of core material in quantum mechanics.
- Full and detailed explanations to help students of average mathematical ability.
- Additional topics covered in this edition include: Feynman's path integrals; the Berry phase; quantum dots; quantum jumps; and Bose-Einstein condensation.
- New chapter on relativistic quantum mechanics.
- Problems set to help students monitor their progress and increase understanding.

CONTENTS

- 1. The origins of quantum theory.
- 2. The wave function and the uncertainty principle.
- 3. The Schrodinger equation.
- 4. One-dimensional examples.
- 5. The formalism of quantum mechanics.
- 6. Angular momentum.
- 7. The Schrodinger equation in three dimensions.
- 8. Approximation methods for stationary problems.
- 9. Approximation methods for time-dependent problems.
- 10. Several- and many-particle systems.
- 11. The interaction of quantum systems with radiation.
- 12. The interaction of quantum systems with external electric and magnetic fields.
- 13. Quantum collision theory.
- 14. Quantum statistics.
- 15. Relativistic quantum mechanics.
- 16. Further applications of quantum mechanics.
- 17. Measurement and interpretation.

ABOUT THE AUTHOR(S)

B.H. Bransden, Department of Physics, University of Durham

C.J. Joachain, Physique Theorique, Universite Libre de Bruxelles University of Wisoconsin

5

Classical Mechanics, 3/e

Herbert Goldstein | Charles P. Poole | John Safko

ີ່ 664 ∣ © 2011

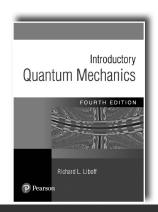
ABOUT THE BOOK

For 30 years, this classic text has been the acknowledged standard in classical mechanics courses. *Classical Mechanics* enables students to make connections between classical and modern physics " an indispensable part of a physicist's education. The authors have updated the topics, applications, and notations to reflect today's physics curriculum. They introduce students to the increasingly important role that nonlinearities play in contemporary applications of classical mechanics. New numerical exercises help students develop skills in the use of computer techniques to solve problems in physics. Mathematical techniques are presented in detail so that

the text remains fully accessible to students who have not had an intermediate course in classical mechanics.

FEATURES

- The classical approach of this leading text book has been revised and updated
- A section on the Euler and Lagrange exact solutions to the three-body problem
- A section on the damped driven oscillator as an example of the workings of the Josephson junction
- Chapter on canonical perturbation theory has been streamlined and the mathematics has been simplified
- Approximately 45 new problems, mostly in Chapters 1–8 and 11.
- Problems sets are now divided into "Derivations" and "Exercises"
- Solutions for 19 select problems have been provided in Appendix C


CONTENTS

- 1. Survey of the Elementary Principles
- 2. Variational Principles and Lagrange's Equations
- 3. The Central Force Problem
- 4. The Kinematics of Rigid Body Motion
- 5. The Rigid Body Equations of Motion
- 6. Oscillations
- 7. The Classical Mechanics of the Special Theory of Relativity
- 8. The Hamilton Equations of Motion
- 9. Canonical Transformations
- Hamilton–Jacobi Theory and Action-Angle Variables
- 11. Classical Chaos
- 12. Canonical Perturbation Theory
- 13. Introduction to the Lagrangian and Hamiltonian Formulations for Continuous Systems and Fields

ABOUT THE AUTHOR(S)

Herbert Goldstein, Columbia University Charles P. Poole Jr., University of South Carolina John L. Safko, University of South Carolina

6

Richard L. Liboff

] 896 | © 2006

Supplements

ABOUT THE BOOK

Careful and detailed explanations of challenging concepts, and comprehensive and up-to-date coverage in this best-selling quantum mechanics text, continue to set the standard in physics education. In this new edition, a new chapter on the revolutionary topic of quantum computing (not currently covered in any other text at this level) and thorough updates to the rest of the text bring it up to date.

Introductory Quantum Mechanics, 4/e

ISBN: 9788131704417

FEATURES

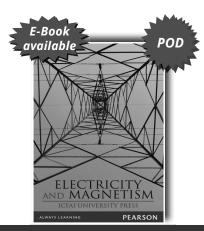
- Introductory Quantum Mechanics, Fourth Edition is well known for its wealth of great problems (869 in total).
- Comprehensive coverage makes the book adaptable to any course.
- The book uses precise presentation and careful use of appropriate math.
- A new chapter on the revolutionary topic of quantum computing and numerous revisions throughout the rest of the book bring it up to date.
- More than 30 new problems have been added.

CONTENTS

Part I. Elementary Principles and Applications to Problems in One Dimension.

- 1. Review of Concepts of Classical Mechanics.
- 2. Historical Review: Experiments and Theories.
- 3. The Postulates of Quantum Mechanics: Operators, Eigenfunctions, and Eigenvalues.
- 4. Preparatory Concepts: Function Spaces and Hermitian Operators.
- 5. Time Development, Conservation Theorems, and Parity.
- 6. Time Development, Conservation Theorems, and Parity.
- 7. Additional One-Dimensional Problems: Bound and Unbound States.
- 8. Finite Potential Well, Periodic Lattice, and Some Simple Problems with Two Degrees of Freedom.

Part II. Further Development of the Theory and Applications to Problems in Three Dimensions.


- 9. Angular Momentum.
- 10. Problems in Three Dimensions.
- 11. Elements of Matrix Mechanics: Spin Wavefunctions.
- 12. Application to Atomic, Molecular, Solid-State, and Nuclear Physics: Elements of Quantum Statistics.
- 13. Perturbation Theory.
- 14. Scattering in Three Dimensions.
- 15. Relativistic Quantum Mechanics.
- 16. Quantum Computing.

ABOUT THE AUTHOR

Richard L. Liboff is presently a Professor of Applied Physics, Applied Math, and Electrical Engineering at Cornell University. He has served as visiting professor at numerous universities and was awarded a Fulbright Scholarship in 1984 in support of a Visiting Professorship of Physics at Tel Aviv University. He has written over 100 scientific articles and has authored four textbooks. His research specialties include condensed-matter theory, kinetic theory, applied math, and elements of astrophysics.

Catalogue Physics 2024.indd 7 09-Jan-24 2:30:41 PM

ELECTRICITY AND ELECTROMAGNETISM/ELECTRODYNAMICS

ISBN: 9788131773727

Electricity and Magnetism

ICFAI University Press

1 440 | © 2012

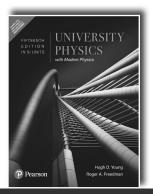
ABOUT THE BOOK

Electricity and Magnetism is designed for undergraduate courses in Physics. It comprehensively covers the topics of electricity and magnetism and brings out the relationship between the two forces with adequate emphasis on principles, theory and pedagogy. Illustrations are specially made to suit classroom presentation. Written in a simple and lucid language, the book progresses from the basic laws, which help the students to stay focused on the key tenets, without getting lost in the maze of intricate details

FEATURES

- It traces the origin of electromagnetic radiations, starting from the first principles.
- In-depth coverage of Current, Resistance and Electric Circuits, Gauss's Law and Magnetism
- Electric Charge and Electric Field and Electric Potential discussed in detail
- Student centric pedagogy with 90 solved examples and over 120 exercises.

CONTENTS


- 1. Electric Charge and Electric Field
- 2. Electric Potential
- 3. Current, Resistance and Electric Circuits
- 4. Gauss's Law
- 5. Capacitance and Dielectrics
- 6. Magnetism
- 7. Sources of Magnetic field
- 8. Electromagnetic Induction
- 9. Inductance
- 10. Alternating Current
- 11. Electromagnetic Waves

ABOUT THE AUTHOR

ICFAI University Press, Hyderabad

INTERMEDIATE PHYSICS

University Physics with Modern Physics, 15/e

ISBN: 9789353949297

Roger A. Freedman | Hugh D. Young

1608 | © 2021

ABOUT THE BOOK

University Physics has been revered for its emphasis on fundamental principles and its applications since its first edition. The new 15th Edition of University Physics with Modern Physics, now in SI Units, draws on insights from several users to help students see patterns and make connections between problem types. Students learn to recognize when to use similar steps in solving the same problem type and develop an understanding for problem solving approaches, rather than simply plugging values into an equation. This edition addresses students' tendency to focus on the objects and situations posed in a problem, rather than recognizing

the underlying principle or the problem type.

FEATURES

- New—Key Example Variation Problems in the new Guided Practice section based on worked examples, build in difficulty by changing scenarios, swapping knowns and unknowns, and adding complexity to provide a wide range of related problems that use the same basic approach to solve.
- New—Key Concept statements appear at the end of every example, providing a summary of the key idea used in the solution to consolidate what was most important and what can be broadly applied to other problems.
- A research-based Problem-Solving Approach—Identify, Set Up, Execute, Evaluate—used in every example to teach students to tackle problems thoughtfully rather than cutting straight to the math.
- Expanded—Challenge Problems significantly stretch students by requiring sophisticated reasoning, often involving multiple steps or concepts.
- Expanded—Cumulative Problems promote advanced problem-solving techniques by covering knowledge and skills from previous chapters to be integrated with understanding from the current chapter.

Hallmark Pedagogy:

- Annotated Key Equations
- Caution Paragraphs
- Visual Summaries
- Problem-Solving Strategies
- Bridging Problems
- Conceptual Examples
- Biosciences-Related Problems
- Data Problems

■ Passage Problems

Test your understanding

CONTENTS

MECHANICS

- 1. Units, Physical Quantities, and Vectors
- 2. Motion Along a Straight Line
- 3. Motion in Two or Three Dimensions
- 4. Newton's Laws of Motion
- 5. Applying Newton's Laws
- 6. Work and Kinetic Energy
- 7. Potential Energy and Energy Conservation
- 8. Momentum, Impulse, and Collisions
- 9. Rotation of Rigid Bodies
- 10. Dynamics of Rotational Motion
- 11. Equilibrium and Elasticity
- 12. Fluid Mechanics
- 13. Gravitation
- 14. Periodic Motion

WAVES/ACOUSTICS

- 15. Mechanical Waves
- 16. Sound and Hearing

Thermodynamics

- 17. Temperature and Heat
- 18. Thermal Properties of Matter
- 19. The First Law of Thermodynamics
- 20. The Second Law of Thermodynamics

ELECTROMAGNETISM

- 21. Electric Charge and Electric Field
- 22. Gauss's Law
- 23. Electric Potential
- 24. Capacitance and Dielectrics
- 25. Current, Resistance, and Electromotive Force
- 26. Direct-Current Circuits

INTERMEDIATE PHYSICS

- 27. Magnetic Field and Magnetic Forces
- 28. Sources of Magnetic Field
- 29. Electromagnetic Induction
- 30. Inductance
- 31. Alternating Current
- 32. Electromagnetic Waves

OPTICS

- 33. The Nature and Propagation of Light
- 34. Geometric Optics
- 35. Interference
- 36. Diffraction
 - MODERN PHYSICS
- 37. Relativity
- 38. Photons: Light Waves Behaving as Particles
- 39. Particles Behaving as Waves

- 40. Quantum Mechanics I: Wave Functions
- 41. Quantum Mechanics II: Atomic Structure
- 42. Molecules and Condensed Matter
- 43. Nuclear Physics
- 44. Particle Physics and Cosmology

APPENDICES

A The International System of Units

B Unit Conversion Factors

C The British System of Units

D Useful Mathematical Relations

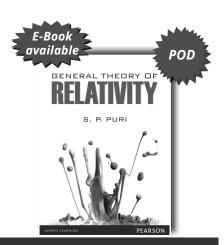
E The Greek Alphabet

F Periodic Table of the Elements

G Numerical Constants

Answers to Odd-Numbered Problems

Credits


Index

ABOUT THE AUTHOR(S)

Roger A. Freedman is a Lecturer in Physics at the University of California, Santa Barbara. He was an undergraduate at the University of California campuses in San Diego and Los Angeles and did his doctoral research in nuclear theory at Stanford University under the direction of Professor J. Dirk Walecka. Dr. Freedman came to UCSB in 1981 after three years of teaching and doing research at the University of Washington

Hugh D. Young was Emeritus Professor of Physics at Carnegie Mellon University. He earned both his undergraduate and graduate degrees from that university. He earned his Ph.D. in fundamental particle theory under the direction of the late Richard Cutkosky. Dr. Young joined the faculty of Carnegie Mellon in 1956 and retired in 2004. He also had two visiting professorships at the University of California, Berkeley.

A. Lewis Ford is Professor of Physics at Texas A&M University. He received a B.A. from Rice University in 1968 and a Ph.D. in chemical physics from the University of Texas at Austin in 1972. After a one-year postdoc at Harvard University, he joined the Texas A&M physics faculty in 1973 and has been there ever since. Professor Ford has specialized in theoretical atomic physics—in particular, atomic collisions. At Texas A&M he has taught a variety of undergraduate and graduate courses, but primarily introductory physics.

ISBN: 9788131795682

S P Puri

ABOUT THE BOOK

1 368 | © 2013

General Theory of Relativity is the generalization of special relativity to include gravitation. It emphasizes that the law of Physics must be same for all observers and thereby extended it to non-inertial frames. This text is intended as a textbook for the students of Physics at the undergraduate and postgraduate level. It gives equal importance to the mathematical and physical aspects of general theory of relativity and hence strengthening the foregrounds.

General Theory of Relativity

FEATURES

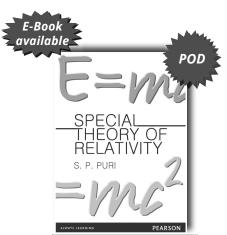
- Detailed study of Tensor analysis
- In-depth coverage on cosmology
- An introductory chapter on Special Theory of Relativity
- 36 figures, 18 solved problems and 82 unsolved problems with answers

10

INTERMEDIATE PHYSICS

Catalogue_Physics_2024.indd 10 09-Jan-24 2:30:43 PM

CONTENTS


Historical Perspective

- 1. A Brief Review on Special Relativity
- 2. Tensor Analysis and Riemannian Geometry
 - Part 1. Line Element
 - Part 2. Geodesic Curves. Covariant Differentiation
 - Part 3. Curvature Tensor
- 3. Einstein's Field Equations

- Einstein's Law of Gravitation for Empty Space. Schwarzschild Solution
- 5. Einstein's Law of Gravitation for Non-empty Space
- 6. Gravitational Waves
- 7. Black Holes
- 8. Cosmology
- 9. Astrophysics

ABOUT THE AUTHOR

SP Puri is a former U.G.C Emeritus Fellow. He was also a Professor and Chairman at Department of Physics in Panjab University, Chandigarh.

Special Theory of Re

S P Puri

ABOUT THE BOOK

232 | © 2013

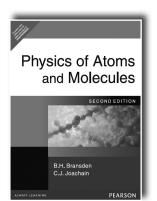
Special Theory of Relativity is primarily intended as a textbook for the students of physics at the undergraduate level. Examining developments in the field as well as the predictions of special relativity that have taken place since 1959, its comprehensive coverage includes engaging explanations of the mathematical treatment as well as the applications of the special theory of relativity.

Special Theory of Relativity

ISBN: 9788131785010

FEATURES

- Includes applications of special theory of relativity in a chapter
- 45 solved problems and 100 unsolved problems for practice
- Answers to unsolved problems included


CONTENTS

- 1. Newtonian Mechanics and Galilean Principle of Relativity
- 2. Lorentz Transformations and Its Kinematic Consequences, Intervals, Causality
- 3. Mathematical Background
- 4. Relativistic Mechanics of a Particle, Collisions and Conservation Laws
- 5. Optical Applications of Lorentz Transformation
- 6. Covariant Electrodynamics
- 7. Applications of Special Theory of Relativity
- 8. Introduction to General Relativity

ABOUT THE AUTHOR

S. P. Puri, is a former U.G.C. Emeritus Fellow, was Professor and Chairman, Department of Physics, Punjab University, Chandigarh.

Catalogue_Physics_2024.indd 11 09-Jan-24 2:30:43 PM

Physics of Atoms and Molecules, 2/e

🖍 B.H. Bransden | C. J. Joachain

🗋 1128 | © 2005

ABOUT THE BOOK

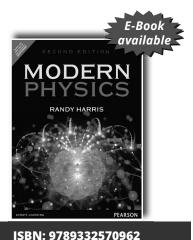
The study of atomic and molecular physics is a key component of undergraduate courses in physics, because of its fundamental importance to the understanding of many aspects of modern physics. The aim of this new edition is to provide a unified account of the subject within an undergraduate framework, taking the opportunity to make improvements based on the teaching experience of users of the first edition, and cover important new developments in the subject.

FEATURES

- Revised material on molecular structure and spectra.
- Extended material on electronic and atomic collisions.
- A new chapter describing applications based on the use of the maser and the laser, including laser spectroscopy, laser cooling and trapping of atoms, Bose Einstein condensation, atom lasers and atomic systems in intense laser fields.
- A new chapter describing other applications, including magnetic resonance, atom optics, atoms in cavities, ions in traps, atomic clocks and astrophysics.
- Revised appendices include new material on molecules and updated tables of physical constants.
- Solutions of selected problems.

CONTENTS

- 1. Electrons, photons and atoms.
- 2. The elements of quantum mechanics.
- 3. One-electron atoms.
- 4. Interaction of one-electron atoms with electomagnetic radiation.
- 5. One-electron atoms: fine structure and hyperfine structure.
- 6. Interaction of one-electron atoms with external electric and magnetic fields.
- 7. Two-electron atoms.
- 8. Many-electron atoms.
- 9. Interaction of many-electron atoms with electromagnetic radiation and with static electric and magnetic fields.
- 10. Molecular structure.
- 11. Molecular spectra.
- 12. Atomic collisions: basic concepts and potential scattering.
- 13. Electron-atom collisions and atomic photoionisation.
- 14. Atom-atom collisions.
- 15. Masers, lasers and their interaction with atoms and molecules.
- Further developments and applications of atomic and molecular physics.
 Appendices.


ABOUT THE AUTHOR(S)

B.H. Bransden, Department of Physics, University of Durham

C.J. Joachain, Physique Theorique, Universite Libre de Bruxelles

14

INTERMEDIATE PHYSICS

Modern Physics, 2/e

Randy Harris

640 © 2016

ABOUT THE BOOK

Modern Physics, Second Edition provides a clear, precise, and contemporary introduction to the theory, experiment, and applications of modern physics, Ideal for both physics majors and engineers, this eagerly awaited second edition puts the modern back into modern physics courses. Pedagogical features throughout the text focus the reader on the core concepts and theories while offering optional, more advanced sections, examples, and cutting-edge applications to suit a variety of students and courses. Critically acclaimed for his lucid style, in the second edition, Randy Harris applies the same insights into recent developments

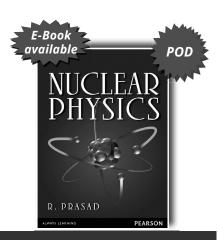
in physics, engineering, and technology.

FEATURES

- A contemporary approach that incorporates recent developments in physics and up-to-date applications in engineering and technology make the physics relevant and engaging.
- Critically acclaimed for a lucid and precise style, the book carefully balances concepts, theory, experimental data, and theory. It strives for complete exposition of fundamental ideas while addressing common misconceptions.
- Progress and Applications sections survey current applications of the theories described in the chapter. Students see how what they learn applies to their chosen career and the opportunities available for professional physicists and engineers.
- Worked Examples in the text carefully walk students step-by-step through solving problems to better prepare them to tackle the end-of-chapter problems.
- Optional/Advanced sections are clearly labeled so that professors can pick and choose sections to optimally match the level, scope, and emphasis of their course.
- Chapter Outlines and brief introductions give students a learning roadmap to the chapter ahead.
- Chapter Summaries now incorporate a Basic Equations section to show how each equation relates to the key topics in the chapter, and to one another.
- Challenge Problems are highlighted so professors can easily build assignments of ideal level, and know where they can push their best students.

CONTENTS

- 1. Dawn of a New Age
- 2. Special Relativity
- 3. Waves and Particles I: Electromagnetic Radiation Behaving as Particles
- 4. Waves and Particles II: Matter Behaving as Waves
- 5. Bound States: Simple Cases
- 6. Unbound States: Obstacles, Tunneling and Particle-Wave Propagation
- 7. Quantum Mechanics in Three Dimensions and The Hydrogen Atom
- 8. Spin and Atomic Physics
- 9. Statistical Mechanics
- 10. Bonding: Molecules and Solids
- 11. Nuclear Physics
- 12. Fundamental Particles and Interactions **Appendices**


ABOUT THE AUTHOR

Randy Harris, University of California, Davis

INTERMEDIATE PHYSICS

09-Jan-24 2:30:46 PM Catalogue Physics 2024 indd 13

NUCLEAR PHYSICS/ENGINEERING

Nuclear Physics

R Prasad

504 © 2014

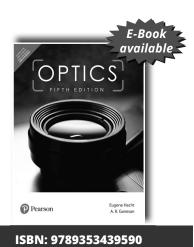
ABOUT THE BOOK

Nuclear Physics provides a clear and concise introduction to the subject. Fundamentals aside, the book reviews the evolution of the subject from its emergence to its present-day advancements and critically examines the future directions of nuclear and particle physics. The book brings together the essence of nuclear, particle and cosmic ray physics, serving as an ideal text for undergraduate students.

ISBN: 9789332522657

FEATURES

- Exclusive chapters on elementary particles and cosmic rays
- Focus on contemporary developments like heavy ion reactions, in-complete fusion, neutrino oscillations, big accelerators, colliding beam experiments & Higg's particle
- Over 220 illustrations
- Rich pedagogy comprising over 300 multiple choice questions and problems for practice


CONTENTS

- 1. The Birth of the Nucleus
- 2. Basic Properties of the Nucleus and their Determination
- 3. Force between Nucleons
- 4. Quantum Mechanical analysis of some Nuclear systems
- 5. Characteristics of stable Nuclei and Nuclear Models
- 6. Radioactive Decay
- 7. Nuclear radiations and Detectors
- 8. Nuclear reactions
- 9. Particle accelerators
- 10. Nuclear energy
- 11. Fundamentals of elementary Particles
- 12. Cosmic rays

ABOUT THE AUTHOR

R. Prasad has more than 40 years experience of teaching physics and nuclear physics to graduate and postgraduate students. He is an ex-professor of nuclear physics at the Aligarh Muslim University, Aligarh, India.

Throughout his career, Prof. Prasad supervised half a dozen Ph.D, about two dozen M.Phil, large number of M.Sc projects, eleven research projects funded by various agencies in India and carried out post doctoral research at many international and national institutes/universities including the First Institute of Experimental Physics, University of Hamburg, Germany and Atom Institute, Technical Universities of Austria, Vienna, Austria among many. He has also attended and chaired sessions of a large number of international and national conferences, seminars and symposia and delivered invited talks. He has published more than 80 research papers in various reputed international and national journals and presented six science-based television films under the UGC higher education programme. He is a recipient of prestigious DAAD (German) Fellowship, Post-doc fellowship of the Government of Austria, and Emeritus fellowship of UGC, India. He is a life member of many academic societies of the country.

Optics, 5/e

Eugene Hecht | A. R. Ganesan

752 © 2020

ABOUT THE BOOK

Optics, Fifth Edition is distinguished by three core imperatives: up-to-date content in line with the ever-evolving technological advances in the Optics field a modern approach to discourse including studies on photons, phasors, and theory and improvements and revisions to the previous edition's pedagogy including over one hundred new worked examples. Sustaining market leadership for over twenty years, this edition continues to demonstrate range and balance in subject matter. The text is grounded in traditional methodology, while providing an early introduction to the powerful perspective of the Fourier theory, which is crucial to present-day analysis.

Electron and neutron diffraction patterns are pictured alongside the customary photon images, and every piece of art has been scrutinized for accuracy and altered where appropriate to improve clarity.

FEATURES

New to this edition

- UPDATED! New illustrations, photos, and revised art are included throughout the text, enhancing the already outstanding visual pedagogy of the book.
- UPDATED! Promoting the balance of theory and instrumentation, this comprehensive text provides students with a classical background to ensure success in their field.
- Anon-mathematical introduction sets the stage for traditional presentation in Optics.
- Traditional discussion of interference is extended, using phasors to graphically represent electric-field amplitudes, giving students an alternative way to visualize and understand core elements.
- Graphical analysis is used in addition to the standard, mathematical treatment of Fourier series to conceptually show what the integrals are actually doing to promote student comprehension.
- A complete Wave Motion section includes helical waves and an added section on Twisted Light.
- Divergence and Curl Comprehension ensures students' understanding of the physical correspondence of divergence and curl in simple terms.
- Understanding Negative Refraction is an active area of contemporary research, which is explained in refined yet simple terms along with a brief introduction to the basic physics involved.
- Constructing Refracted Rays highlights the method devised by Huygens Optics and allows a convenient way to appreciate refraction in anisotropic crystals.
- The Geometrical Optics is a collection of new art which clearly illustrates the behavior of lenses and mirrors, along with additional remarks on fiberoptics; including the subsections Virtual Objects, Focal-Plane Ray Tracing, and Holey/Microstructured Fibers.
- Fourier Optics includes a new subsection, Two-Dimensional Images, and contains a remarkable series of illustrations depicting how spatial frequency components combine to create images.
- The Modern Optics contains an enriched and updated treatment of lasers accompanied by tables and illustrations and includes a subsection on Optoelectronic Image Reconstruction.

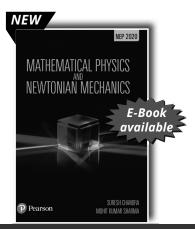
CONTENTS

- 1. A Brief History
- 2. Wave Motion
- 3. Electromagnetic Theory, Photons, and Light
- 4. The Propagation of Light
- 5. Geometrical Optics
- 6. More on Geometrical Optics

- 7. The Superposition of Waves
- 8. Polarization
- 9. Interference
- 10. Diffraction
- 11. Fourier Optics
- 12. Basics of Coherence Theory

OPTICS

09-Jan-24 2:30:48 PM Catalogue Physics 2024 indd 15


 Modern Optics: Lasers and Other Topics Appendix 1 Appendix 2 Table 1 Solutions to Selected Problems Bibliography Index List of Tables

ABOUT THE AUTHOR(S)

Eugene Hecht Adelphi University

A. R. Ganesan Professor, Department of Physics Indian Institute of Technology Madras Chennai

PHYSICS FUNDAMENTALS

ISBN: 9789357053242

Mathematical Physics and Newtonian Mechanics, 1e

🌠 Suresh Chandra | Mohit Kumar Sharma

☐ 516 | © 2023

ABOUT THE BOOK

This textbook is designed to meet the syllabus requirements of the undergraduate students of physics as per the Common Minimum Syllabus prescribed for all Uttar Pradesh State Universities and Colleges under the recommended National Education Policy 2020, for the paper on Mathematical Physics and Newtonian Mechanics and the lab course on Mechanical Properties of Matter. The topics are discussed in a methodical way and a number of topics such as Pseudo-Vector, Pseudo-Scalar, Wedge Product of Vectors, etc, have been discussed in a very systematic and simple manner to suit the beginner learners.

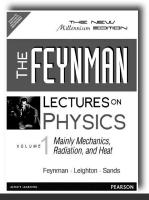
FEATURES

- The concepts are explained in a student-friendly language
- Topics are supported by exercises and review questions for better understanding
- Includes a lab manual on Mechanical properties of Matter

CONTENTS

- 1. Vector Algebra
- 2. Vector Calculus
- 3. Coordinate Systems
- 4. Introduction to Tensors
- 5. Dynamics of a System of Particles
- 6. Dynamics of a Rigid Body
- 7. Motion of Planets and Satellites
- 8. Wave Motion
- 9. Before going to Laboratory
- 10. In Laboratory

ABOUT THE AUTHOR


Prof. (Dr.) Suresh Chandra, AvH Fellow (Germany), FRAS (London), FMAS (Pune), President of Physical Sciences section of 108th Indian Science Congress Association, Kolkata (Govt. of India). Currently, Professor of Physics & Deputy Director Amity Center for Astronomy & Astrophysics, Amity Institute of Applied Sciences Amity University, Uttar Pradesh.

Dr. Mohit Kumar Sharma, M.Sc., M.Phil., Ph.D. (Physics), Young Scientist Awardee (ISCA, 2014) National Postdoctoral Fellow, SERB, DST, New Delhi (2017 - 2019). Currently, Assistant Professor (Physics), Sunderdeep Group of Institution, Dasna, Ghaziabad (U.P.)

16

PHYSICS FUNDAMENTALS

Catalogue_Physics_2024.indd 16 09-Jan-24 2:30:49 PM

The Feynman Lectures on Physics: Volume I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat

Richard P. Feynman | Robert B. Leighton | Matthew Sands

ABOUT THE BOOK

Timeless and collectible, *The Feynman Lectures on Physics* are essential reading, not just for students of Physics, but for anyone seeking an insightful introduction to the field from the inimitable Richard P. Feynman.

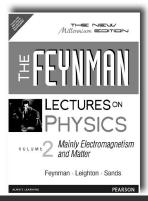
When I look at The Feynman Lectures on Physics, I feel a very personal sense of closeness to them," said Feynman, looking back at the origins of these books. Ranging from Newton's laws through the special theory of relativity, optics, statistical mechanics, and thermodynamics, the lectures collected in Volume I of *The Feynman*

Lectures on Physics stand as a monument to clear exposition and deep insightand to Feynman's deep connection with the field.

CONTENTS

- 11. Atoms in Motion
- 12. Basic Physics
- 13. The Relation of Physics to Other Sciences
- 14. Conservation of Energy
- 15. Time and Distance
- 16. Probability
- 17. The Theory of Gravitation
- 18. Motion
- 19. Newton's Laws of Dynamics
- 20. Conservation of Momentum
- 21. Vectors
- 22. Characteristics of Force
- 23. Work and Potential Energy (A)
- 24. Work and Potential Energy (conclusion)
- 25. The Special Theory of Relativity
- 26. Relativistic Energy and Momentum
- 27. Space-Time
- 28. Rotation in Two Dimensions
- 29. Center of Mass: Moment of Inertia
- 30. Rotation in Space
- 31. The Harmonic Oscillator
- 32. Algebra
- 33. Resonance
- 34. Transients
- 35. Liner Systems and Review
- 36. Optics: The Principle of Least Time

- 37. Geometrical Optics
- 38. Electromagnetic Radiation
- 39. Interference
- 40. Diffraction
- 41. The Origin of the Refractive Index
- 42. Radiation Damping: Light Scattering
- 43. Polarization
- 44. Relativistic Effects in Radiation
- 45. ColorVision
- 46. Mechanisms on Seeing
- 47. Quantum Behavior
- 48. The Relation of Wave and Particle Viewpoints
- 49. The Kinetic Theory of Gases
- 50. The Principles of Statistical Mechanics
- 51. The Brownian Movement
- 52. Application of Kinetic Theory
- 53. Diffusion
- 54. The Laws of Thermodynamics
- 55. Illustrations of Thermodynamics
- 56. Ratchet and Pawl
- 57. Sound: The Wave Equation
- 58. Beats
- 59. Modes
- 60. Harmonics
- 61. Waves
- 62. Symmetry in Physical Laws


ABOUT THE AUTHOR(S)

Richard P. Feynman was a professor of physics at Caltech from 1959 to 1988. In 1965 he shared a Nobel Prize in Physics for his work on the development of quantum electrodynamics.

Robert B. Leighton was a physicist and astronomer, an esteemed teacher and textbook author, and professor at Caltech for many years.

Matthew Sands has been a professor at Caltech, deputy director of the Stanford Linear Accelerator Centre, and vice chancellor for science at the University of California, Santa Cruz.

PHYSICS FUNDAMENTALS

The Feynman Lectures on Physics: Volume II: The New Millennium Edition: **Mainly Electromagnetism and Matter**

Richard P. Feynman | Robert B. Leighton | Matthew Sands

592 © 2012

ABOUT THE BOOK

Timeless and collectible, *The Feynman Lectures on Physics* are essential reading, not just for students of Physics, but for anyone seeking an insightful introduction to the field from the inimitable Richard P. Feynman.

When I look at The Feynman Lectures on Physics, "I feel a very personal sense of closeness to them," said Feynman, looking back at the origins of these books. Ranging from Gauss's law and Maxwell's electrodynamics to waveguides, dielectrics, magnetic materials, and elasticity, the lectures collected in Volume II of

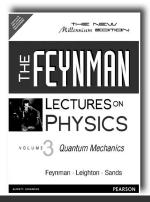
The Feynman Lectures on Physics stand as a monument to clear exposition and deep insightand to Feynman's deep connection with the field.

CONTENTS

- 1. Electromagnetism
- 2. Differential Calculus of Vector Fields
- 3. Vector Integral Calculus
- 4. Electrostatics
- 5. Application of Gauss' Law
- 6. The Electric Field in Various Circumstances
- 7. The Electric Field in Various Circumstances (Continued)
- 8. Electrostatic Energy
- 9. Electricity in the Atmosphere
- 10. Dielectrics
- 11. Inside Dielectrics
- 12. Electrostatic Analogs
- 13. Magnetostatics
- 14. The Magnetic Field in Various Situations
- 15. The Vector Potential
- 16. Induced Currents
- 17. The Laws of Induction
- 18. The Maxwell Equations
- 19. The Principle of Least Action
- 20. Solutions of Maxwell's Equations in Free Space
- 21. Solutions of Maxwell's Equations with Currents and Charges

- 22. AC Circuits
- 23. Cavity Resonators
- 24. Waveguides
- 25. Electrodynamics in Relativistic Notation
- 26. Lorentz Transformations of the Momentum
- 27. Field Energy and Field Momentum
- 28. Electromagnetic Mass
- 29. The Motion of Charges in Electric and magnetic
- 30. The Internal Geometry of Crystals
- 31. Tensors
- 32. Refractive Index of Dense Materials
- 33. Reflection from Surfaces
- 34. The Magnetism of Matter
- 35. Paramagnetism and Magnetic Resonance
- 36. Ferromagnetism
- 37. Magnetic Materials
- 38. Elasticity
- 39. Elastic Materials
- 40. The Flow of Dry Water
- 41. The Flow of Wet Water
- 42. Curved Space

ABOUT THE AUTHOR(S)


Richard P. Feynman was a professor of physics at Caltech from 1959 to 1988. In 1965 he shared a Nobel Prize in Physics for his work on the development of quantum electrodynamics.

Robert B. Leighton was a physicist and astronomer, an esteemed teacher and textbook author, and professor at Caltech for many years.

Matthew Sands has been a professor at Caltech, deputy director of the Stanford Linear Accelerator Centre, and vice chancellor for science at the University of California, Santa Cruz.

PHYSICS FUNDAMENTALS

Catalogue_Physics_2024.indd 18 09-Jan-24 2:30:49 PM

The Feynman Lectures on Physics: Volume III: The New Millennium Edition: Quantum Mechanics

Richard P. Feynman | Robert B. Leighton | Matthew Sands

📘 400 | © 2012

ABOUT THE BOOK

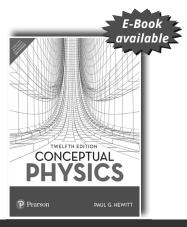
Timeless and collectible, *The Feynman Lectures on Physics* are essential reading, not just for students of Physics, but for anyone seeking an insightful introduction to the field from the inimitable Richard P. Feynman.

When I look at The Feynman Lectures on Physics, I feel a very personal sense of closeness to them," said Feynman, looking back at the origins of these books. Ranging from probability amplitudes to spin, two-state systems, propagation in a crystal lattice, semiconductors, symmetry, and conservation laws, the lectures

collected in Volume III of *The Feynman Lectures on Physics* stand as a monument to clear exposition and deep insightand to Feynman's deep connection with the field.

CONTENTS

- 1. Quantum Behavior
- 2. The Relation of waves and Particles Viewpoints
- 3. Probability Amplitudes
- 4. Identical Particles
- 5. Spin One
- 6. Spin One-Half
- 7. The Dependence of Amplitudes on Time
- 8. The Hamiltonian Matrix
- 9. The Ammonia Maser
- 10. Other Two-State Systems
- 11. More Two-State Systems
- 12. The Hyperfine Splitting in Hydrogen
- 13. Propagation in a Crystal Lattice
- 14. Semiconductors
- 15. The Independent Particle Approximation
- 16. The Dependence of Amplitudes on Position
- 17. Symmetry and Conservation Laws
- 18. Angular Momentum
- 19. The Hydrogen Atom and The Periodic Table
- 20. Operators
- 21. The Schrodinger Equation in a Classical Context: A Seminar on Superconductivity


ABOUT THE AUTHOR(S)

Richard P. Feynman was a professor of physics at Caltech from 1959 to 1988. In 1965 he shared a Nobel Prize in Physics for his work on the development of quantum electrodynamics.

Robert B. Leighton was a physicist and astronomer, an esteemed teacher and textbook author, and professor at Caltech for many years.

Matthew Sands has been a professor at Caltech, deputy director of the Stanford Linear Accelerator Centre, and vice chancellor for science at the University of California, Santa Cruz.

19

Conceptual Physics, 12/e

Paul G. Hewitt

1 816 | © 2018

ABOUT THE BOOK

Intended for non-science majors Physics Courses, Since defining this course 30 vears ago, Paul Hewitt's best-selling text continues as the benchmark by which all others are judged. In Conceptual Physics Twelfth Edition Paul Hewitt makes physics interesting, understandable, and relevant for non-science majors. The Twelfth Edition will delight students with informative and fun Hewitt-Drew-It screencasts, updated content and applications.

Hewitt's text is guided by the principle of "concepts before calculations" and is famous for engaging students with analogies and imagery from the real-world that

build a strong conceptual understanding of physical principles ranging from classical mechanics to modern physics.

This program presents a better teaching and learning experience-for you and your students.

Prepare for lecture: NEW! 100 Hewitt-Drew-It screencasts, authored and narrated by Paul Hewitt, explain physics concepts through animation and narration. The exciting new Screencasts, accessed through OR codes in the textbook, will enable students to engage with the physics concepts more actively outside of class.

Make physics delightful: Relevant and accessible narrative, analogies from real-world situations, and simple representations of the underlying mathematical relationships make physics more appealing to students.

Build a strong conceptual understanding of physics: Students gain a solid understanding of physics through practice and problem solving in the book.

FEATURES

- Make physics delightful
- Updated applications are available for digital technology, environment, and energy. These topics are at the forefront of everyone's consciousness these days and an intelligent awareness of their scientific foundations will give rise to better decision making in the political arena.
- A new interior design provides an attractive, fresh, and accessible new look, updating a classic text to be even more student friendly.
- An extensive full-color figure and photo program includes the author's hallmark cartoons, which are both approachable and informative.
- Fun and easy-to-perform projects involve students in the scientific process of exploration and observation.
- Insight boxes provide short snippets of information about how topics in the text relate to real-life situations, experiments, and other parts of the book.
- Enhanced coverage of topics in energy and environment are included and help to keep students aware of current events.

CONTENTS

- 1. 1. About Science
 - I. MECHANICS
- 2. Newton's First Law of Motion: Inertia
- 3. Linear Motion
- 4. Newton's Second Law of Motion: Force and Acceleration
- 5. Newton's Third Law of Motion: Action and Reaction
- 6. Momentum
- 7. Energy
- 8. Rotational Motion
- 9. Gravity

PHYSICS FUNDAMENTALS

10. Projectile and Satellite Motion

II. Properties of Matter

- 11. Atomic Nature of Matter
- 12. Solids
- 13. Liquids
- 14. Gases and Plasmas

III. HEAT

- 15. Temperature, Heat and Expansion
- 16. Heat Transfer
- 17. Change of Phase
- 18. Thermodynamics

IV. SOUND

- 19. Vibrations and Waves
- 20. Sound
- 21. Musical Sounds

V. ELECTRICITY AND MAGNETISM

- 22. Electrostatics
- 23. Electric Current
- 24. Magnetism
- 25. Electromagnetic Induction

VI. LIGHT

- 26. Properties of Light
- 27. Color
- 28. Reflection and Refraction
- 29. Light Waves
- 30. Light Emission
- 31. Light Quanta

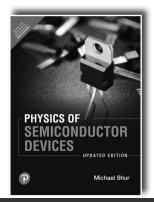
VII. ATOMIC AND NUCLEAR PHYSICS

- 32. The Atom and the Quantum
- 33. Atomic Nucleus and Radioactivity
- 34. Nuclear Fission and Fusion

VIII. RELATIVITY

- 35. Special Theory of Relativity
- 36. General Theory of Relativity

Appendices


- A. Systems of Measurement
- B. More About Motion
- C. Graphing
- D. More About Vectors
- E. Exponential Growth and Doubling Time

ABOUT THE AUTHOR

Paul G. Hewitt, former silver-medal boxing champion, sign painter, uranium prospector, and soldier, Paul began college at the age of 27, with the help of the GI Bill. He pioneered the conceptual approach to teaching physics at the City College of San Francisco. He has taught as a guest teacher at various middle schools and high schools, the University of California at both the Berkeley and Santa Cruz campuses, and the University of Hawaii at both the Manoa and Hilo campuses. He also taught for 20 years at the Exploratorium in San Francisco, which honored him with its Outstanding Educator Award in 2000. He is the author of Conceptual Physics and a co-author of Conceptual Physical Science and Conceptual Physical Science Explorations (with John Suchocki and Leslie Hewitt).

Catalogue_Physics_2024.indd 21 09-Jan-24 2:30:51 PM

SEMICONDUCTOR DEVICES

Physics of Semiconductor Devices, Updated edition, 1/e

Michael Shur

664 © 2019

ABOUT THE BOOK

This book provides a practical introduction to the basics of semiconductor physics as well as insights into important developments, such as amorphous silicon, compound semiconductor technologies, and novel heterostructure transistors.

ISBN: 9789353430061

FEATURES

- Implements all theories and models discussed in microcomputer programs
 - Providing readers with a useful "toolbox" for the modeling and simulation of semiconductor devices.
- Includes detailed appendices with useful information on semiconductor parameters which help readers to solve practical problems related to the analysis, design, and characterization of different semiconductor devices.
- Includes over 35 microcomputer programs and nearly 150 problems.

CONTENTS

- 1. Basic Semiconductor Physics
- 2. p-n Junctions, Schottky Barrier Junctions, Heterojunctions and Ohmic Contacts
- 3. Bipolar Junction Transistors
- 4. Field Effect Transistors
- 5. Photonic Devices
- 6. Transferred-Electron Devices and Avalanche Diodes
- 7. Novel Devices

ABOUT THE AUTHOR

Michael Shur, University of Virginia.

SOLID STATE PHYSICS

Elementary Solid State Physics Principles and Applications M. Ali Omar P Pearson

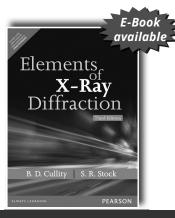
Elementary Solid State Physics: Principles and Applications

M. Ali Omar

<u>]</u> 669 | © 2005

ABOUT THE BOOK

The volume is intended to serve as a general text in solid state physics for undergraduates in physics, applied physics, engineering, and other related scientific disciplines. It covers a wide range of topics with as many practical applications as possible.


ISBN: 9788177583779

CONTENTS

- 1. Crystal Structures and Interatomic Forces
- 2. X-Ray, Neutron, and Electron Diffraction in Crystals
- 3. Lattice Vibrations: Thermal, Acoustic, and Optical Properties
- 4. Metals I: The Free-Electron Model
- 5. Metals II: Energy Bands in Solids
- 6. Semiconductors I: Theory
- 7. Semiconductors II: Devices
- 8. Dielectric and Optical Properties of Solids
- 9. Magnetism and Magnetic Resonances
- 10. Superconductivity
- 11. Topics in Metallurgy and Defects in Solids
- 12. Materials and Solid-State Chemistry
- 13. Solid-State Biophysics

ABOUT THE AUTHOR

M. Ali Omar, Lowell Technological Institute

Elements of X-Ray Diffraction, 3/e

■ B. D. Cullity | S.R. Stock

📘 656 | © 2014

ABOUT THE BOOK

This revision of a classical text is intended to acquaint the reader, who has no prior knowledge of the subject, with the theory of x-ray diffraction, the experimental methods involved, and the main applications. The text is a collection of principles and methods designed directly for the student and not a reference tool for the advanced reader

FEATURES

- No metallurgical data are given beyond that necessary to illustrate the diffraction methods involved.
- X-ray diffraction is stressed rather than metallurgy.
- The book is divided into three main parts—Fundamentals; experimental methods; and applications.
- The subject of crystal structure is approached through, and, based on, the concept of the point lattice (Bravais lattice), because the point lattice of a substance is so closely related to its diffraction pattern.
- The book is written entirely in terms of the Bragg law and can be read without any knowledge of the reciprocal lattice.

CONTENTS

- 1. Properties of X-rays.
- 2. Geometry of Crystals.
- 3. Diffraction I: Directions of Diffracted Beams.
- 4. Diffraction II: Intensities of Diffracted Beams.
- 5. Diffraction III: Non-Ideal Samples.
- 6. Laure Photographs.
- 7. Powder Photographs.
- 8. Diffractometer and Spectrometer.
- 9. Orientation and Quality of Single Crystals.
- 10. Structure of Polycrystalline Aggregates.
- 11. Determination of Crystal Structure.
- 12. Precise Parameter Measurements.
- 13. Phase-Diagram Determination.
- 14. Order-Disorder Transformation.
- 15. Chemical Analysis of X-ray Diffraction.
- 16. Chemical Analysis by X-ray Spectrometry.
- 17. Measurements of Residual Stress.
- 18. Polymers.
- 19. Small Angle Scatters.
- 20. Transmission Electron Microscope.

ABOUT THE AUTHOR(S)

B.D. Cullity (Deceased) University of Notre Dame

S.R. Stock, Georgia Institute of Technology

24

X-RAY

ISBN	Author	Title	Price	Page
9788131708392	Bransden / Joachain	Quantum Mechanics, 2/e	1330.00	5
9788177582796	Bransden / Joachain	Physics of Atoms and Molecules, 2/e	1375.00	12
9789357053242	Chandra/Sharma	Mathematical Physics and Newtonian Mechanics, 1e	630.00	16
9789332535169	Cullity / Stock	Elements of X-Ray Diffraction, 3/e	965.00	24
9788131792117	Feynman / Leighton / Sands	The Feynman Lectures on Physics: Volume I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat	775.00	17
9788131792124	Feynman / Leighton / Sands	The Feynman Lectures on Physics: Volume II: The New Millennium Edition: Mainly Electromagnetism and Matter	790.00	18
9788131792131	Feynman / Leighton / Sands	The Feynman Lectures on Physics: Volume III: The New Millennium Edition: Quantum Mechanics	790.00	19
9789353949297	Freedman / Young	University Physics with Modern Physics, 15/e	1585.00	9
9788131758915	Goldstein / Poole / Safko	Classical Mechanics, 3/e	965.00	6
9789332570962	Harris	Modern Physics, 2/e	945.00	13
9789353439590	Hecht / Ganesan	Optics, 5/e	895.00	15
9789352861774	Hewitt	Conceptual Physics, 12/e	1070.00	20
9788131773727	ICFAI University Press	Electricity and Magnetism	580.00	8
9788131704417	Liboff	Introductory Quantum Mechanics, 4/e	1235.00	7
9788177583779	Omar	Elementary Solid State Physics: Principles and Applications	1120.00	23
9789332522657	Prasad	Nuclear Physics	725.00	14
9788131795682	Puri	General Theory of Relativity	605.00	10
9788131785010	Puri	Special Theory of Relativity	485.00	11
9788177589160	Sakurai	Advanced Quantum Mechanics	975.00	2
9789353430061	Shur	Physics of Semiconductor Devices, Updated edition,	885.00	22
9789332573918	Symon	Mechanics, 3/e	1060.00	3
9788131773352	Tyagi	Principles of Quantum Mechanics	735.00	4

^{*}All Prices are subject to change without notice

AUTHOR INDEX

Catalogue_Physics_2024.indd 25 09-Jan-24 2:30:52 PM

For sales queries, please contact...

	Deshbandhu Dash (RM)	9782000668	deshbandhu.dash@pearson.com	Delhi (All North and West States)	
NORTH	Raman Pruthi (Cluster Head)	9999841513	Raman.Pruthi@Pearson.com	Delhi (All North States)	
	Santosh Kumar	9415517650	santosh.kumar2@pearson.com	Uttar Pradesh	
	Rajdip Sen	9582284615	rajdip.sen@pearson.com	Delhi	
	Ankit Kesarwani	7291826785	ankit.kesarwani@pearson.com	Uttarakhand	
NO	Manoj Gupta	9910974743	manoj.gupta@pearson.com	Delhi	
	Karan Alagh	7837052092	karan.alagh@pearson.com	Chandigarh	
	Pawan Verma	9015182175	pawan.verma@pearson.com	Uttar Pradesh	
	Arvind Dubey	8130835072	arvind.dubey@pearson.com	Uttar Pradesh	
	Ranjeet Kumar	9950701203	ranjeet.kumar@pearson.com	Jaipur	
	T. Srinivasan (RM)	99490 34041	t.srinivasan I @pearson.com	Telangana (All South, East, North East States)	
	Sudipto Banerjee (Cluster Head)	9836970429	sudipto.banerjee@pearson.com	West Bengal/Bihar/Odisha/Nort	
	Soumyo Banerjee	9830336567	soumyo.banerjee@pearson.com	West Bengal	
EAST	Tapan Kumar Saha	9830137194	tapan.saha@pearson.com	West Bengal	
H	Suryakanta Padhiary	9776201639	suryakanta.padhiary@pearson.com	Odisha	
	Surajit Kalita	9123677963	surajit.kalita@pearson.com	West Bengal	
	Pratik Mazumdar	9836264409	pratik.mazumdar@pearson.com	Bihar	
	Darpandra Bhuyan	9706554754	darpandra.bhuyan@pearson.com	Assam (All North East States)	
	Deshbandhu Dash (RM)	9782000668	deshbandhu.dash@pearson.com	Delhi (All North and West States)	
	Jyoti Kumar Chaudhary (Cluster Head)	8377989817	jyoti.chaudhary@pearson.com	Maharashtra/Madhya Pradesh/ Gujrat/Chattisgarh	
	Aakash Agrawal	8103466555	akash.agrawal@pearson.com	Madhya Pradesh/Chattisgarh	
LS	Sanjay Shetty	9145143559	sanjay.shetty@pearson.com	Maharashtra	
WEST	Vikash Pulke	9765947474	vikas.pukale@pearson.com	Maharashtra	
	Gaurav Gagwani	9898813419	Gaurav.Gagwani@pearson.com	Gujarat	
	Dinesh Adyalkar	9970545744	dinesh.adyalkar@pearson.com	Maharashtra	
	Priyank Vyas	9867223897	priyank.vyas@pearson.com	Maharashtra	
	Brijesh Pandey	9892064017	brijesh.pandey@pearson.com	Maharashtra	

Catalogue_Physics_2024.indd 26 09-Jan-24 2:30:52 PM

	T. Srinivasan (RM)	9949034041	t.srinivasan I @pearson.com	Telangana (All South, East, North East States)
	A. Ramakrishnan (Cluster Head)	9500028293	ramakrishnan.arumugam@pearson.com	Tamil Nadu/Kerala
	I. Paraneetharan (Cluster Head)	9092005309	i.paraneetharan@pearson.com	Karnataka/Andhra Pradesh/ Telangana
	Jayaraj V. S.	9994070570	vs.jayaraj@pearson.com	Tamil Nadu
SOUTH	P.A.Manigandan	9003353596	manigandan.anand@pearson.com	Tamil Nadu
	Ravichandran, Gobinath	9944759974	gobinath.ravichandran@pearson.com	Tamil Nadu
	Premsai R	7358398311	premsai.r@pearson.com	Tamil Nadu
	Kuppuraj P	7358184368	kuppuraj.p@pearson.com	Tamil Nadu
	Subeesh V S	9847938326	subeesh.vs@pearson.com	Kerala
	Thummala Kiran	9177602565	thummala.kiran@pearson.com	Telangana
	A. Venu Kumar	9676771407	venu.kumar@pearson.com	Telangana
	Bala Subrahmanyam	9391393919	bala.subrahmanyam@pearson.com	Andhra Pradesh
	S. Purushotham	9916633111	s.purushotham@pearson.com	Karnataka
	B. V. Vasudevan	9032760875	bv.vasudevan@pearson.com	Andhra Pradesh
	Sudhir Jain	9986133226	sudhir.jain@pearson.com	Karnataka

Catalogue_Physics_2024.indd 27 09-Jan-24 2:30:52 PM

NOTES

Catalogue_Physics_2024.indd 28 09-Jan-24 2:30:53 PM

NOTES

Catalogue_Physics_2024.indd 29 09-Jan-24 2:30:53 PM

NOTES

Catalogue_Physics_2024.indd 30 09-Jan-24 2:30:53 PM